Adaptive k-means clustering algorithm for MR breast image segmentation

被引:92
|
作者
Moftah, Hossam M. [1 ,2 ]
Azar, Ahmad Taher [2 ,3 ]
Al-Shammari, Eiman Tamah [4 ]
Ghali, Neveen I. [2 ,5 ]
Hassanien, Aboul Ella [2 ,6 ]
Shoman, Mahmoud [6 ]
机构
[1] Beni Suef Univ, Fac Comp & Informat, Bani Suwayf, Egypt
[2] SRGE, Cairo, Egypt
[3] Benha Univ, Fac Comp & Informat, Banha, Egypt
[4] Kuwait Univ, Fac Comp Sci & Engn, Kuwait, Kuwait
[5] Al Azhar Univ, Fac Sci, Cairo, Egypt
[6] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 24卷 / 7-8期
关键词
K-means clustering; Image segmentation; Magnetic resonance (MR) image; Breast cancer; Adaptive segmentation; SCREENING MAMMOGRAPHY; NEURAL-NETWORK;
D O I
10.1007/s00521-013-1437-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is vital for meaningful analysis and interpretation of the medical images. The most popular method for clustering is k-means clustering. This article presents a new approach intended to provide more reliable magnetic resonance (MR) breast image segmentation that is based on adaptation to identify target objects through an optimization methodology that maintains the optimum result during iterations. The proposed approach improves and enhances the effectiveness and efficiency of the traditional k-means clustering algorithm. The performance of the presented approach was evaluated using various tests and different MR breast images. The experimental results demonstrate that the overall accuracy provided by the proposed adaptive k-means approach is superior to the standard k-means clustering technique.
引用
收藏
页码:1917 / 1928
页数:12
相关论文
共 50 条
  • [41] An improved K-means clustering method for cDNA microarray image segmentation
    Wang, T. N.
    Li, T. J.
    Shao, G. F.
    Wu, S. X.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03) : 7771 - 7781
  • [42] Multilevel Image Segmentation using Hybrid Grasshopper Optimization and k-means Algorithm
    Shahrian, Masoud
    Momtaz, Amir Keyvan
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [43] Color Dependent K-Means Clustering for Color Image Segmentation of Colored Medical Images
    Yadav, Himanshu
    PrateekBansal
    KumarSunkaria, Ramesh
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 858 - 862
  • [44] Image segmentation using K-means clustering, Gabor filter and moving mesh method
    Shi, Hongjian
    Lee, Wan-Lung
    IMAGING SCIENCE JOURNAL, 2021, 69 (5-8): : 407 - 416
  • [45] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [46] A k-means based clustering algorithm
    Bloisi, Domenico Daniele
    Locchi, Luca
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 109 - 118
  • [47] Telecom Customer Segmentation with K-means Clustering
    Luo Ye
    Cai Qiu-ru
    Xi Hai-xu
    Liu Yi-jun
    Yu Zhi-min
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 648 - 651
  • [48] Fast Adaptive Depth Estimation Algorithm Based on K-means Segmentation
    Dong, Xin
    Wang, Guozhong
    Fan, Tao
    Li, Guoping
    Zhao, Haiwu
    Teng, Guowei
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA TECHNOLOGY (ICMT-13), 2013, 84 : 1784 - 1791
  • [49] A Novel Approach for Medical Image Segmentation using PCA and K-means Clustering
    Katkar, Juilee
    Baraskar, Trupti
    Mankar, Vijay R.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 430 - 435
  • [50] cDNA Mieroarray Image Segmentation with an Improved Moving K-means Clustering Method
    Shao, Guifang
    Wu, Shunxiang
    Li, Tiejun
    2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 306 - 311