Predicting surgical site infection after spine surgery: a validated model using a prospective surgical registry

被引:66
作者
Lee, Michael J. [1 ]
Cizik, Amy M. [1 ]
Hamilton, Deven [1 ]
Chapman, Jens R. [1 ]
机构
[1] Univ Washington, Med Ctr, Dept Orthoped Surg & Sports Med, Seattle, WA 98195 USA
关键词
Surgical site infection; Spine surgery; Complication; Predictive model; Registry; Spinesage.com; RISK-FACTORS; MULTIVARIATE-ANALYSIS; MEDICAL COMPLICATION; IRRIGATION; INDEX;
D O I
10.1016/j.spinee.2013.12.026
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND CONTEXT: The impact of surgical site infection (SSI) is substantial. Although previous study has determined relative risk and odds ratio (OR) values to quantify risk factors, these values may be difficult to translate to the patient during counseling of surgical options. Ideally, a model that predicts absolute risk of SSI, rather than relative risk or OR values, would greatly enhance the discussion of safety of spine surgery. To date, there is no risk stratification model that specifically predicts the risk of medical complication. PURPOSE: The purpose of this study was to create and validate a predictive model for the risk of SSI after spine surgery. STUDY DESIGN: This study performs a multivariate analysis of SSI after spine surgery using a large prospective surgical registry. Using the results of this analysis, this study will then create and validate a predictive model for SSI after spine surgery. PATIENT SAMPLE: The patient sample is from a high-quality surgical registry from our two institutions with prospectively collected, detailed demographic, comorbidity, and complication data. OUTCOME MEASURES: An SSI that required return to the operating room for surgical debridement. MATERIALS AND METHODS: Using a prospectively collected surgical registry of more than 1,532 patients with extensive demographic, comorbidity, surgical, and complication details recorded for 2 years after the surgery, we identified several risk factors for SSI after multivariate analysis. Using the beta coefficients from those regression analyses, we created a model to predict the occurrence of SSI after spine surgery. We split our data into two subsets for internal and cross-validation of our model. We created a predictive model based on our beta coefficients from our multivariate analysis. RESULTS: The final predictive model for SSI had a receiver-operator curve characteristic of 0.72, considered to be a fair measure. The final model has been uploaded for use on SpineSage.com. CONCLUSIONS: We present a validated model for predicting SSI after spine surgery. The value in this model is that it gives the user an absolute percent likelihood of SSI after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Patients are far more likely to understand an absolute percentage, rather than relative risk and confidence interval values. A model such as this is of paramount importance in counseling patients and enhancing the safety of spine surgery. In addition, a tool such as this can be of great use particularly as health care trends toward pay for performance, quality metrics (such as SSI), and risk adjustment. To facilitate the use of this model, we have created a Web site (SpineSage.com) where users can enter patient data to determine likelihood for SSI. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2112 / 2117
页数:6
相关论文
共 16 条
[1]   Risk factors for unintended durotomy during spine surgery: a multivariate analysis [J].
Baker, Geoff A. ;
Cizik, Amy M. ;
Bransford, Richard J. ;
Bellabarba, Carlo ;
Konodi, Mark A. ;
Chapman, Jens R. ;
Lee, Michael J. .
SPINE JOURNAL, 2012, 12 (02) :121-126
[2]   Using the Spine Surgical Invasiveness Index to Identify Risk of Surgical Site Infection A Multivariate Analysis [J].
Cizik, Amy M. ;
Lee, Michael J. ;
Martin, Brook I. ;
Bransford, Richard J. ;
Bellabarba, Carlo ;
Chapman, Jens R. ;
Mirza, Sohail K. .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2012, 94A (04) :335-342
[3]   Postoperative Infection Treatment Score for the Spine (PITSS): construction and validation of a predictive model to define need for single versus multiple irrigation and debridement for spinal surgical site infection [J].
DiPaola, Christian P. ;
Saravanja, Davor D. ;
Boriani, Luca ;
Zhang, Hongbin ;
Boyd, Michael C. ;
Kwon, Brian K. ;
Paquette, Scott J. ;
Dvorak, Marcel F. S. ;
Fisher, Charles G. ;
Street, John T. .
SPINE JOURNAL, 2012, 12 (03) :218-230
[4]   Risk factors for infection after spinal surgery [J].
Fang, A ;
Hu, SS ;
Endres, N ;
Bradford, DS .
SPINE, 2005, 30 (12) :1460-1465
[5]   Systematic Review: Prediction of Perioperative Cardiac Complications and Mortality by the Revised Cardiac Risk Index [J].
Ford, Meredith K. ;
Beattie, W. Scott ;
Wijeysundera, Duminda N. .
ANNALS OF INTERNAL MEDICINE, 2010, 152 (01) :26-W7
[6]  
Klekamp J, 1999, J SPINAL DISORD, V12, P187
[7]   Risk Factors for Medical Complication After Cervical Spine Surgery A Multivariate Analysis of 582 Patients [J].
Lee, Michael J. ;
Konodi, Mark A. ;
Cizik, Amy M. ;
Weinreich, Mark A. ;
Bransford, Richard J. ;
Bellabarba, Carlo ;
Chapman, Jens .
SPINE, 2013, 38 (03) :223-228
[8]   Risk factors for medical complication after spine surgery: a multivariate analysis of 1,591 patients [J].
Lee, Michael J. ;
Konodi, Mark A. ;
Cizik, Amy M. ;
Bransford, Richard J. ;
Bellabarba, Carlo ;
Chapman, Jens R. .
SPINE JOURNAL, 2012, 12 (03) :197-206
[9]   Risk Factors for Medical Complication After Lumbar Spine Surgery A Multivariate Analysis of 767 Patients [J].
Lee, Michael J. ;
Hacquebord, Jacques ;
Varshney, Anuj ;
Cizik, Amy M. ;
Bransford, Richard J. ;
Bellabarba, Carlo ;
Konodi, Mark A. ;
Chapman, Jens .
SPINE, 2011, 36 (21) :1801-1806
[10]   Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation [J].
Mirza, Sohail K. ;
Deyo, Richard A. ;
Heagerty, Patrick J. ;
Turner, Judith A. ;
Lee, Lorri A. ;
Goodkin, Robert .
BMC MUSCULOSKELETAL DISORDERS, 2006, 7 (1)