On the location of the eigenvalues of Jacobi matrices

被引:21
作者
da Fonseca, C. M. [1 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
Jacobi matrix; eigenvalues; orthogonal polynomials;
D O I
10.1016/j.aml.2005.11.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using some well known concepts on orthogonal polynomials, some recent results on the location of eigenvalues of tridiagonal matrices of very large order are extended. A significant number of important papers are unified. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1168 / 1174
页数:7
相关论文
共 50 条
  • [21] Density of the spectrum of Jacobi matrices with power asymptotics
    Pruckner, Raphael
    ASYMPTOTIC ANALYSIS, 2020, 117 (3-4) : 199 - 213
  • [22] ASYMPTOTICS OF LARGE EIGENVALUES FOR A CLASS OF BAND MATRICES
    de Monvel, Anne Boutet
    Janas, Jan
    Zielinski, Lech
    REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (08)
  • [23] A survey of the progress of locating methods of complex matrices' eigenvalues and some new location theorem and their applications
    Wu, Junliang
    Zhao, Jianguo
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (04) : 1273 - 1285
  • [24] Inhomogeneous Jacobi Matrices on Trees
    Szwarc, Ryszard
    CONSTRUCTIVE APPROXIMATION, 2018, 48 (02) : 183 - 199
  • [25] Periodic Jacobi matrices on trees
    Avni, Nir
    Breuer, Jonathan
    Simon, Barry
    ADVANCES IN MATHEMATICS, 2020, 370
  • [26] A Note on Reflectionless Jacobi Matrices
    Jaksic, V.
    Landon, B.
    Panati, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (02) : 827 - 838
  • [27] A Note on Reflectionless Jacobi Matrices
    V. Jakšić
    B. Landon
    A. Panati
    Communications in Mathematical Physics, 2014, 332 : 827 - 838
  • [28] On the eigenvalues of Euclidean distance matrices
    Alfakih, A. Y.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (03) : 237 - 250
  • [29] On the eigenvalues of some tridiagonal matrices
    da Fonseca, C. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 283 - 286
  • [30] Darboux transformation of symmetric Jacobi matrices and Toda lattices
    Kovalyov, Ivan
    Levina, Oleksandra
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10