Effects of finite-range interactions on the one-electron spectral properties of one-dimensional metals: Application to Bi/InSb(001)

被引:4
|
作者
Carmelo, Jose M. P. [1 ,2 ,3 ,4 ,5 ]
Cadez, Tilen [3 ,4 ,6 ]
Ohtsubo, Yoshiyuki [7 ,8 ]
Kimura, Shin-ichi [7 ,8 ]
Campbell, David K. [1 ]
机构
[1] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Minho, Ctr Phys, P-4169007 Oporto, Portugal
[4] Univ Porto, P-4169007 Oporto, Portugal
[5] Univ Minho, Dept Phys, Campus Gualtar, P-4710057 Braga, Portugal
[6] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[7] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan
[8] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
基金
美国国家科学基金会;
关键词
SPIN-CHARGE SEPARATION; LUTTINGER LIQUID; PHOTOEMISSION; MODEL; TRANSITION;
D O I
10.1103/PhysRevB.100.035105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the one-electron spectral properties of one-dimensional interacting electron systems in which the interactions have finite range. We employ a mobile quantum impurity scheme that describes the interactions of the fractionalized excitations at energies above the standard Tomonga-Luttinger liquid limit and show that the phase shifts induced by the impurity describe universal properties of the one-particle spectral function. We find the explicit forms in terms of these phase shifts for the momentum dependent exponents that control the behavior of the spectral function near and at the (k, co)-plane singularities where most of the spectral weight is located. The universality arises because the line shape near the singularities is independent of the short-distance part of the interaction potentials. For the class of potentials considered here, the charge fractionalized particles have screened Coulomb interactions that decay with a power-law exponent l > 5. We apply the theory to the angle-resolved photo-electron spectroscopy (ARPES) in the highly one-dimensional bismuth-induced anisotropic structure on indium antimonide Bi/InSb(001). Our theoretical predictions agree quantitatively with both (i) the experimental value found in Bi/InSb(001) for the exponent a that controls the suppression of the density of states at very small excitation energy omega and (ii) the location in the (k, omega) plane of the experimentally observed high-energy peaks in the ARPES momentum and energy distributions. We conclude with a discussion of experimental properties beyond the range of our present theoretical framework and further open questions regarding the one-electron spectral properties of Bi/InSb(001).
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Critical properties of one-dimensional electron systems with 1/rα-type long-range interactions
    Tsukamoto, Y
    Kawakami, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (01) : 149 - 154
  • [32] One-dimensional Ising ferromagnet frustrated by long-range interactions at finite temperatures
    Cinti, F.
    Portmann, O.
    Pescia, D.
    Vindigni, A.
    PHYSICAL REVIEW B, 2009, 79 (21)
  • [33] Spin-polarized quasi-one-dimensional state with finite band gap on the Bi/InSb(001) surface
    Kishi, J.
    Ohtsubo, Y.
    Nakamura, T.
    Yaji, K.
    Harasawa, A.
    Komori, F.
    Shin, S.
    Rault, J. E.
    Le Fevre, P.
    Bertran, F.
    Taleb-Ibrahimi, A.
    Nurmamat, M.
    Yamane, H.
    Ideta, S.
    Tanaka, K.
    Kimura, S.
    PHYSICAL REVIEW MATERIALS, 2017, 1 (06):
  • [34] Finite-temperature spectral functions of strongly correlated one-dimensional electron systems
    Penc, K
    Serhan, M
    PHYSICAL REVIEW B, 1997, 56 (11): : 6555 - 6558
  • [35] Finite-temperature spectral functions of strongly correlated one-dimensional electron systems
    Penc, K.
    Serhan, M.
    Physical Review B: Condensed Matter, 56 (11):
  • [36] Correlation effects in a one-dimensional electron gas with short-range interaction
    Demirel, E
    Tanatar, B
    SOLID STATE COMMUNICATIONS, 1999, 110 (01) : 51 - 56
  • [39] Spectral density approach to the one-dimensional classical Heisenberg ferromagnet with long-range interactions
    Cosenza, F
    Cavallo, A
    De Cesare, L
    PHYSICS LETTERS A, 2003, 310 (2-3) : 223 - 228
  • [40] One-dimensional Dirac operators with zero-range interactions: Spectral, scattering, and topological results
    Pankrashkin, Konstantin
    Richard, Serge
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)