Generalized geometric Goppa codes

被引:8
作者
Heydtmann, AE [1 ]
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Kongens Lyngby, Denmark
关键词
D O I
10.1081/AGB-120003988
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conventional geometric Goppa codes are defined in terms of functions of an algebraic function field associated with a divisor evaluated in places of degree 1. The generalization that will be treated here allows evaluations in places of arbitrary degree. With the appropriate inner product, the dual of the code can be defined and described in terms of Weil differentials similarly to conventional geometric Goppa codes. A decoding algorithm is derived.
引用
收藏
页码:2763 / 2789
页数:27
相关论文
共 50 条
[41]   The shift bound for cyclic, Reed-Muller and geometric Goppa codes [J].
Pellikaan, R .
ARITHMETIC, GEOMETRY AND CODING THEORY, 1996, :155-174
[42]   Using the Structure of Subfields in the Construction of Goppa Codes and Extended Goppa Codes [J].
Tomlinson, Martin ;
Bezzateev, Sergey V. ;
Jibril, Mubarak ;
Ambroze, Marcel A. ;
Ahmed, Mohammed Zaki .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) :3214-3224
[44]   Convolutional Goppa codes [J].
Porras, JMM ;
Pérez, JAD ;
Curto, JII ;
Sotelo, GS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) :340-344
[45]   INTERSECTING GOPPA CODES [J].
RETTER, CT .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (04) :822-828
[46]   CYCLOTOMIC GOPPA CODES [J].
QUEBBEMANN, HG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :1317-1320
[47]   On quaternary Goppa codes [J].
Epelde, Markel ;
Larrucea, Xabier ;
Rua, Ignacio F. .
DISCRETE MATHEMATICS, 2020, 343 (09)
[48]   ON THE PARAMETERS OF GOPPA CODES [J].
WIRTZ, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :1341-1341
[49]   DERIVATION OF GOPPA CODES [J].
MANDELBAUM, DM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) :110-111
[50]   Linearized Goppa Codes [J].
Wang, Li-Ping .
2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, :2496-2499