Percolation in networks with voids and bottlenecks

被引:16
作者
Haji-Akbari, Amir [1 ]
Ziff, Robert M.
机构
[1] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 02期
基金
美国国家科学基金会;
关键词
percolation; probability; voids (solid); THRESHOLDS; PROBABILITIES; MODELS;
D O I
10.1103/PhysRevE.79.021118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A general method is proposed for predicting the asymptotic percolation threshold of networks with bottlenecks, in the limit that the subnet mesh size goes to zero. The validity of this method is tested for bond percolation on filled checkerboard and "stack-of-triangle" lattices. Thresholds for the checkerboard lattices of different mesh sizes are estimated using the gradient percolation method, while for the triangular system they are found exactly using the triangle-triangle transformation. The values of the thresholds approach the asymptotic values of 0.64222 and 0.53993, respectively, as the mesh is made finer, consistent with a direct determination based upon the predicted critical corner-connection probability.
引用
收藏
页数:8
相关论文
共 39 条
  • [1] The percolation threshold in systems of permeable ellipses
    Ambrozic, M.
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2008, 41 (02) : 121 - 127
  • [2] Finite-size effects for percolation on Apollonian networks
    Auto, Daniel M.
    Moreira, Andre A.
    Herrmann, Hans J.
    Andrade, Jose S., Jr.
    [J]. PHYSICAL REVIEW E, 2008, 78 (06)
  • [3] Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models
    Berhan, L.
    Sastry, A. M.
    [J]. PHYSICAL REVIEW E, 2007, 75 (04):
  • [4] Percolation and three-dimensional structure of supercritical water
    Bernabei, M.
    Botti, A.
    Bruni, F.
    Ricci, M. A.
    Soper, A. K.
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [5] Random cluster models on the triangular lattice
    Chayes, L
    Lei, HK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (04) : 647 - 670
  • [6] Percolation transitions in two dimensions
    Feng, Xiaomei
    Deng, Youjin
    Blote, Henk W. J.
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [7] PHASE-TRANSITIONS ON FRACTALS .2. SIERPINSKI GASKETS
    GEFEN, Y
    AHARONY, A
    SHAPIR, Y
    MANDELBROT, BB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02): : 435 - 444
  • [8] Percolation on correlated networks
    Goltsev, A. V.
    Dorogovtsev, S. N.
    Mendes, J. F. F.
    [J]. PHYSICAL REVIEW E, 2008, 78 (05)
  • [9] Physical and geometrical percolations of effective conductivity on a lattice
    Hakobyan, Yeranuhi
    Papoulia, Katerina D.
    Grigoriu, Mircea D.
    [J]. PHYSICAL REVIEW B, 2007, 76 (14)
  • [10] Transport exponent in a three-dimensional continuum tunneling-percolation model
    Johner, N.
    Grimaldi, C.
    Balberg, I.
    Ryser, P.
    [J]. PHYSICAL REVIEW B, 2008, 77 (17):