The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background

被引:336
作者
Arzoumanian, Z. [1 ,2 ]
Baker, P. T. [3 ,4 ]
Brazier, A. [5 ]
Burke-Spolaor, S. [3 ,4 ]
Chamberlin, S. J. [6 ]
Chatterjee, S. [5 ]
Christy, B. [7 ]
Cordes, J. M. [5 ]
Cornish, N. J. [8 ]
Crawford, F. [9 ]
Cromartie, H. Thankful [10 ]
Crowter, K. [11 ]
DeCesar, M. [12 ]
Demorest, P. B. [13 ]
Dolch, T. [14 ]
Ellis, J. A. [3 ,4 ,41 ]
Ferdman, R. D. [15 ]
Ferrara, E. [16 ]
Folkner, W. M. [17 ]
Fonseca, E. [18 ]
Garver-Daniels, N. [3 ,4 ]
Gentile, P. A. [3 ,4 ]
Haas, R. [19 ]
Hazboun, J. S. [20 ,21 ]
Huerta, E. A. [19 ,22 ]
Islo, K. [23 ]
Jones, G. [24 ]
Jones, M. L. [3 ,4 ]
Kaplan, D. L. [23 ]
Kaspi, V. M. [18 ]
Lam, M. T. [3 ,4 ]
Lazio, T. J. W. [17 ,25 ]
Levin, L. [26 ]
Lommen, A. N. [27 ]
Lorimer, D. R. [3 ,4 ]
Luo, J. [21 ]
Lynch, R. S. [28 ]
Madison, D. R. [29 ,30 ]
McLaughlin, M. A. [3 ,4 ]
McWilliams, S. T. [3 ,4 ]
Mingarelli, C. M. F. [30 ]
Ng, C. [11 ]
Nice, D. J. [12 ]
Park, R. S. [17 ]
Pennucci, T. T. [3 ,4 ,31 ,32 ]
Pol, N. S. [3 ,4 ]
Ransom, S. M. [10 ,29 ]
Ray, P. S. [33 ]
Rasskazov, A. [31 ,32 ,34 ,35 ]
Siemens, X. [23 ]
机构
[1] NASA, Ctr Res & Explorat Space Sci & Technol, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA
[2] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA
[3] West Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26506 USA
[4] West Virginia Univ, Ctr Gravitat Waves & Cosmol, Chestnut Ridge Res Bldg, Morgantown, WV 26505 USA
[5] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[6] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
[7] Notre Dame Maryland Univ, 4701 N Charles St, Baltimore, MD 21210 USA
[8] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[9] Franklin & Marshall Coll, Dept Phys & Astron, POB 3003, Lancaster, PA 17604 USA
[10] Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA
[11] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[12] Lafayette Coll, Dept Phys, Easton, PA 18042 USA
[13] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA
[14] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA
[15] Univ East Anglia, Dept Phys, Norwich, Norfolk, England
[16] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[17] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[18] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada
[19] Univ Illinois, NCSA, Urbana, IL 61801 USA
[20] Univ Washington, 18115 Campus Way NE, Bothell, WA 98011 USA
[21] Univ Texas Rio Grande Valley, Ctr Adv Radio Astron, Brownsville, TX 78520 USA
[22] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[23] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA
[24] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[25] CALTECH, Theoret AstroPhys Including Relat TAPIR, MC 350-17, Pasadena, CA 91125 USA
[26] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England
[27] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA
[28] Green Bank Observ, POB 2, Green Bank, WV 24944 USA
[29] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA
[30] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[31] Eotvos Lorand Univ, Inst Phys, Pazmany Ps 1-A, H-1117 Budapest, Hungary
[32] Hungarian Acad Sci, MTA ELTE Extragalact Astrophys Res Grp, H-1117 Budapest, Hungary
[33] Naval Res Lab, Washington, DC 20375 USA
[34] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA
[35] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA
[36] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia
[37] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA
[38] Chinese Acad Sci, Natl Astron Observ, 20A Datun Rd, Beijing 100012, Peoples R China
[39] Max Planck Inst Radio Astron, Hugel 69, D-53121 Bonn, Germany
[40] Microsoft Corp, Redmond, WA USA
[41] Infinia ML, 202 Rigsbee Ave, Durham, NC 27701 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
ephemerides; gravitational waves; inflation; methods: data analysis; pulsars: general; quasars: supermassive black holes; BLACK-HOLE BINARIES; GRAVITY-WAVES; LIMITS; RADIATION; MODEL; ECCENTRICITY; GALAXY; EVOLUTION; MERGERS; SATELLITES;
D O I
10.3847/1538-4357/aabd3b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11. year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of AGWB. < 1.45 x 10(-15) at a frequency of f = 1 yr(-1) for a fiducial f(-2/3) power-law spectrum and with interpulsar correlations modeled. This is a factor of similar to 2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of G mu < 5.3 x 10(-11) -a factor of similar to 2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is Omega(GWB) h(2) < 3.4 x 10(-10)
引用
收藏
页数:22
相关论文
共 118 条
[1]   GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (16)
[2]   Optimal strategies for gravitational wave stochastic background searches in pulsar timing data [J].
Anholm, Melissa ;
Ballmer, Stefan ;
Creighton, Jolien D. E. ;
Price, Larry R. ;
Siemens, Xavier .
PHYSICAL REVIEW D, 2009, 79 (08)
[3]  
[Anonymous], APJ
[4]  
[Anonymous], NYASA
[5]  
[Anonymous], ARXIV180101837
[6]  
[Anonymous], ARXIV170902693
[7]  
[Anonymous], ARXIV170902434
[8]  
[Anonymous], APJ
[9]  
[Anonymous], MNRAS
[10]  
[Anonymous], ARXIVASTROPH01080