Temperature dependent ageing mechanisms in Lithium-ion batteries - A Post-Mortem study

被引:868
作者
Waldmann, Thomas [1 ]
Wilka, Marcel [1 ]
Kasper, Michael [1 ]
Fleischhammer, Meike [1 ]
Wohlfahrt-Mehrens, Margret [1 ]
机构
[1] Baden Wurttemberg, ZSW Zentrum Sonnenenergie Wasserstoff Forsch, D-89081 Ulm, Germany
关键词
High-power Lithium-ion batteries; Ageing mechanisms; Electrode polarization; Arrhenius; Post-Mortem analysis; Battery life-time; COMPOSITE POSITIVE ELECTRODE; CYCLE-LIFE; STORAGE PERFORMANCE; CATHODE MATERIAL; GRAPHITE ANODES; CALENDAR LIFE; CELLS; SPINEL; DEGRADATION; INTERFACE;
D O I
10.1016/j.jpowsour.2014.03.112
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of temperatures in the range of -20 degrees C to 70 degrees C on the ageing behaviour of cycled Lithium-ion batteries are investigated quantitatively by electrochemical methods and Post-Mortem analysis. Commercial 18650-type high-power cells with a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode and graphite/carbon anode were used as test system. The cells were cycled at a rate of 1 degrees C until the discharge capacity falls below 80% of the initial capacity. Interestingly, an Arrhenius plot indicates two different ageing mechanisms for the ranges of -20 degrees C to 25 degrees C and 25 degrees C to 70 degrees C. Below 25 degrees C, the ageing rates increase with decreasing temperature, while above 25 degrees C ageing is accelerated with increasing temperature. The aged 18650 cells are inspected via scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), inductively coupled plasma (ICP), measurements of electrode thickness and X-ray diffraction (XRD) after disassembly to learn more about the chemical reasons of the degradation. The effect of different temperatures on the electrode polarizations are evaluated by assembling electrodes in pouch cells with reference electrode as a model system. We find that the dominating ageing mechanism for T < 25 degrees C is Lithium plating, while for T > 25 degrees C the cathodes show degeneration and the anodes will be increasingly covered by SEI layers. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 60 条
[1]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[2]   Lithium Ion Battery Anode Aging Mechanisms [J].
Agubra, Victor ;
Fergus, Jeffrey .
MATERIALS, 2013, 6 (04) :1310-1325
[3]   Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 cell at elevated temperature and additives to improve its cycle life [J].
Amine, Khalil ;
Chen, Zonghai ;
Zhang, Z. ;
Liu, Jun ;
Lu, Wenquan ;
Qin, Yan ;
Lu, Jun ;
Curtis, Larry ;
Sun, Yang-Kook .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (44) :17754-17759
[4]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]  
Atkins P. W., 1990, PHYS CHEM
[7]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[8]   An accelerated calendar and cycle life study of Li-ion cells [J].
Bloom, I ;
Cole, BW ;
Sohn, JJ ;
Jones, SA ;
Polzin, EG ;
Battaglia, VS ;
Henriksen, GL ;
Motloch, C ;
Richardson, R ;
Unkelhaeuser, T ;
Ingersoll, D ;
Case, HL .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :238-247
[9]   Self-discharge of LiMn2O4/C Li-ion cells in their discharged state -: Understanding by means of three-electrode measurements [J].
Blyr, A ;
Sigala, C ;
Amatucci, G ;
Guyomard, D ;
Chabre, Y ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :194-209
[10]   Lithium-Ion Batteries Working at 85°C: Aging Phenomena and Electrode/Electrolyte Interfaces Studied by XPS [J].
Bodenes, Lucille ;
Dedryvere, Remi ;
Martinez, Herve ;
Fischer, Florent ;
Tessier, Ceccile ;
Peres, Jean-Paul .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (10) :A1739-A1746