Rational smoothness and fixed points of torus actions

被引:39
作者
Brion, M [1 ]
机构
[1] Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
10.1007/BF01237356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a criterion for rational smoothness of an algebraic variety with a torus action, with applications to orbit closures in flag varieties, and to closures of double classes in regular group completions.
引用
收藏
页码:127 / 156
页数:30
相关论文
共 24 条
[1]  
[Anonymous], 1994, COMMUTATIVE ALGEBRA
[2]   Equivariant Euler classes and rationally smooth points [J].
Arabia, A .
ANNALES DE L INSTITUT FOURIER, 1998, 48 (03) :861-+
[3]   COHOMOLOGY OF REGULAR EMBEDDINGS [J].
BIFET, E ;
DECONCINI, C ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1990, 82 (01) :1-34
[4]  
Bredon G E, 1972, Introduction to compact transformation groups, V46
[5]   The behaviour at infinity of the Bruhat decomposition [J].
Brion, M .
COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (01) :137-174
[6]  
Brion M, 1998, NATO ADV SCI I C-MAT, V514, P1
[7]  
CARRELL JB, 1994, ALGEBRAIC GROUPS THE, P53
[8]   THE NIL HECKE RING AND DEODHAR CONJECTURE ON BRUHAT INTERVALS [J].
DYER, MJ .
INVENTIONES MATHEMATICAE, 1993, 111 (03) :571-574
[9]  
Hsiang W.Y., 1975, COHOMOLOGY THEORY TO
[10]   VANISHING OF ODD-DIMENSIONAL INTERSECTION COHOMOLOGY [J].
JOSHUA, R .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :239-253