A Network-Based Method for Predicting Disease-Causing Genes

被引:67
作者
Karni, Shaul [1 ]
Soreq, Hermona [2 ]
Sharan, Roded [1 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] Hebrew Univ Jerusalem, Interdisciplinary Ctr Computat Neurosci, Jerusalem, Israel
基金
以色列科学基金会;
关键词
gene-disease association; gene expression analysis; myasthenia gravis; protein-protein interaction network; PROTEIN REFERENCE DATABASE; MYASTHENIA-GRAVIS; SYSTEMS BIOLOGY; EXPRESSION; ASSOCIATION; PROGNOSIS; MAP;
D O I
10.1089/cmb.2008.05TT
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A fundamental problem in human health is the inference of disease-causing genes, with important applications to diagnosis and treatment. Previous work in this direction relied on knowledge of multiple loci associated with the disease, or causal genes for similar diseases, which limited its applicability. Here we present a new approach to causal gene prediction that is based on integrating protein-protein interaction network data with gene expression data under a condition of interest. The latter are used to derive a set of disease-related genes which is assumed to be in close proximity in the network to the causal genes. Our method applies a set-cover-like heuristic to identify a small set of genes that best "cover" the disease-related genes. We perform comprehensive simulations to validate our method and test its robustness to noise. In addition, we validate our method on real gene expression data and on gene specific knockouts. Finally, we apply it to suggest possible genes that are involved in myasthenia gravis.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 36 条
[1]   Motif module map reveals enforcement of aging by continual NF-κB activity [J].
Adler, Adam S. ;
Sinha, Saurabh ;
Kawahara, Tiara L. A. ;
Zhang, Jennifer Y. ;
Segal, Eran ;
Chang, Howard Y. .
GENES & DEVELOPMENT, 2007, 21 (24) :3244-3257
[2]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[3]   Systematic identification of functional orthologs based on protein network comparison [J].
Bandyopadhyay, S ;
Sharan, R ;
Ideker, T .
GENOME RESEARCH, 2006, 16 (03) :428-435
[4]  
Cormen T.H., 2001, Introduction To Algorithms, Vsecond
[5]  
Deng Minghua, 2003, Pac Symp Biocomput, P140
[6]   HLA genotypes in Turkish patients with myasthenia gravis:: comparison with multiple sclerosis patients on the basis of clinical subtypes and demographic features [J].
Dönmez, B ;
Özakbas, S ;
Öktem, MA ;
Gedizlioglu, M ;
Coker, I ;
Genc, A ;
Idiman, E .
HUMAN IMMUNOLOGY, 2004, 65 (07) :752-757
[7]   Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis [J].
Elkon, R ;
Rashi-Elkeles, S ;
Lerenthal, Y ;
Linhart, C ;
Tenne, T ;
Amariglio, N ;
Rechavi, G ;
Shamir, R ;
Shiloh, Y .
GENOME BIOLOGY, 2005, 6 (05)
[8]   A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PROTEIN INTERACTIONS [J].
FIELDS, S ;
SONG, OK .
NATURE, 1989, 340 (6230) :245-246
[9]   Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes [J].
Franke, Lude ;
van Bakel, Harm ;
Fokkens, Like ;
de Jong, Edwin D. ;
Egmont-Petersen, Michael ;
Wijmenga, Cisca .
AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 78 (06) :1011-1025
[10]   The thymic theme of acetylcholinesterase splice variants in myasthenia gravis [J].
Gilboa-Geffen, Adi ;
Lacoste, Paul P. ;
Soreq, Lilach ;
Cizeron-Clairac, Geraldine ;
Le Panse, Rozen ;
Truffault, Frederique ;
Shaked, Iftach ;
Soreq, Hermona ;
Berrih-Aknin, Sonia .
BLOOD, 2007, 109 (10) :4383-4391