Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands

被引:82
作者
Goda, K. [1 ]
机构
[1] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Copula; Joint probability distribution; Seismic reliability assessment; Peak displacement demand; Permanent residual displacement demand;
D O I
10.1016/j.strusafe.2009.09.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Reliability analysis of structures requires statistical models of multi-variate random data that are nonlinearly interrelated. The current reliability methods that use the Nataf transformation and the linear correlation matrix may encounter difficulties in dealing with such situations. A copula approach can offer a general and flexible way of describing nonlinear dependence among multi-variate data in isolation from their marginal probability distributions, and serves as a powerful tool for modeling and simulating nonlinearly-interrelated data. In this study, an introduction as well as illustrative application of the copula theory is given in the context of structural reliability. The numerical example deals with the performance evaluation of existing structures subjected to earthquake loading in terms of both peak and residual displacement demands. The joint probability distribution modeling of peak and residual displacement seismic demands based on the copula theory is demonstrated, and the developed statistical models are used to examine the effects of nonlinear dependence on seismic reliability assessment. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:112 / 123
页数:12
相关论文
共 21 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 2005, PRINCETON SERIES FIN
[3]  
[Anonymous], J ENG MECH-ASCE, DOI DOI 10.1061/(ASCE)0733-9399(1986)112:1(85)
[4]  
[Anonymous], 2006, An introduction to copulas
[5]  
Benjamin JR, 1970, PROBABILITY STAT DEC
[6]   Performance-based seismic response of frame structures including residual deformations. Part I: Single-degree of freedom systems [J].
Christopoulos, C ;
Pampanin, S ;
Priestley, MJN .
JOURNAL OF EARTHQUAKE ENGINEERING, 2003, 7 (01) :97-118
[7]   Bivariate statistical approach to check adequacy of dam spillway [J].
De Michele, C ;
Salvadori, G ;
Canossi, M ;
Petaccia, A ;
Rosso, R .
JOURNAL OF HYDROLOGIC ENGINEERING, 2005, 10 (01) :50-57
[8]  
*FED EM MAN AG, 2005, FEMA440
[9]  
Frees E.W., 1998, N. Am. Actuar. J, V1, P1, DOI DOI 10.1080/10920277.1998.10595667
[10]   STATISTICAL-INFERENCE PROCEDURES FOR BIVARIATE ARCHIMEDEAN COPULAS [J].
GENEST, C ;
RIVEST, LP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :1034-1043