SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition

被引:26
作者
Azad, Taha [1 ,2 ]
Singaravelu, Ragunath [1 ,2 ]
Fekete, Emily E. F. [1 ,2 ]
Taha, Zaid [1 ,2 ]
Rezaei, Reza [1 ,2 ]
Arulanandam, Rozanne [1 ]
Boulton, Stephen [1 ,2 ]
Diallo, Jean-Simon [1 ,2 ]
Ilkow, Carolina S. [1 ,2 ]
Bell, John C. [1 ,2 ]
机构
[1] Ottawa Hosp, Res Inst, Ottawa, ON K1H 8L6, Canada
[2] Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
SARS-CoV2; COVID-19; Spike; ACE2; Receptor interaction; Luminescent biosensor; LUMINESCENT BIOSENSOR; PROTEIN INTERACTIONS; LUCIFERASE; ASSAY; THERMOSTABILITY; REPORTER; FRAGMENT;
D O I
10.1016/j.bios.2021.113122
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
As the COVID-19 pandemic continues, there is an imminent need for rapid diagnostic tools and effective antivirals targeting SARS-CoV-2. We have developed a novel bioluminescence-based biosensor to probe a key hostvirus interaction during viral entry: the binding of SARS-CoV-2 viral spike (S) protein to its receptor, angiotensinconverting enzyme 2 (ACE2). Derived from Nanoluciferase binary technology (NanoBiT), the biosensor is composed of Nanoluciferase split into two complementary subunits, Large BiT and Small BiT, fused to the Spike S1 domain of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. The ACE2-S1 interaction results in reassembly of functional Nanoluciferase, which catalyzes a bioluminescent reaction that can be assayed in a highly sensitive and specific manner. We demonstrate the biosensor?s large dynamic range, enhanced thermostability and pH tolerance. In addition, we show the biosensor?s versatility towards the high-throughput screening of drugs which disrupt the ACE2-S1 interaction, as well as its ability to act as a surrogate virus neutralization assay. Results obtained with our biosensor correlate well with those obtained with a Spikepseudotyped lentivirus assay. This rapid in vitro tool does not require infectious virus and should enable the timely development of antiviral modalities targeting SARS-CoV-2 entry.
引用
收藏
页数:8
相关论文
共 26 条
[1]   A simple protein-based surrogate neutralization assay for SARS-CoV-2 [J].
Abe, Kento T. ;
Li, Zhijie ;
Samson, Reuben ;
Samavarchi-Tehrani, Payman ;
Valcourt, Emelissa J. ;
Wood, Heidi ;
Budylowski, Patrick ;
Dupuis, Alan P. ;
Girardin, Roxie C. ;
Rathod, Bhavisha ;
Wang, Jenny H. ;
Barrios-Rodiles, Miriam ;
Colwill, Karen ;
McGeer, Allison J. ;
Mubareka, Samira ;
Gommerman, Jennifer L. ;
Durocher, Yves ;
Ostrowski, Mario ;
McDonough, Kathleen A. ;
Drebot, Michael A. ;
Drews, Steven J. ;
Rini, James M. ;
Gingras, Anne-Claude .
JCI INSIGHT, 2020, 5 (19)
[2]   The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase [J].
Alipour, Bagher Said ;
Hosseinkhani, Saman ;
Ardestani, Sussan K. ;
Moradi, Ali .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2009, 8 (06) :847-855
[3]   A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay [J].
Ataei, Farangis ;
Torkzadeh-Mahani, Masoud ;
Hosseinkhani, Saman .
BIOSENSORS & BIOELECTRONICS, 2013, 41 :642-648
[4]   A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis [J].
Azad, T. ;
van Rensburg, H. J. Janse ;
Lightbody, E. D. ;
Neveu, B. ;
Champagne, A. ;
Ghaffari, A. ;
Kay, V. R. ;
Hao, Y. ;
Shen, H. ;
Yeung, B. ;
Croy, B. A. ;
Guan, K. L. ;
Pouliot, F. ;
Zhang, J. ;
Nicol, C. J. B. ;
Yang, X. .
NATURE COMMUNICATIONS, 2018, 9
[5]   Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to Receptor-Binding Domain Induces Trimerization [J].
Azad, Taha ;
Singaravelu, Ragunath ;
Crupi, Mathieu J. F. ;
Jamieson, Taylor ;
Dave, Jaahnavi ;
Brown, Emily E. F. ;
Rezaei, Reza ;
Taha, Zaid ;
Boulton, Stephen ;
Martin, Nikolas T. ;
Surendran, Abera ;
Poutou, Joanna ;
Ghahremani, Mina ;
Nouri, Kazem ;
Whelan, Jack T. ;
Duong, Jessie ;
Tucker, Sarah ;
Diallo, Jean-Simon ;
Bell, John C. ;
Ilkow, Carolina S. .
MEMBRANES, 2020, 10 (09) :1-8
[6]   Split-luciferase complementary assay: applications, recent developments, and future perspectives [J].
Azad, Taha ;
Tashakor, Amin ;
Hosseinkhani, Saman .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (23) :5541-5560
[7]   Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays [J].
Crawford, Katharine H. D. ;
Eguia, Rachel ;
Dingens, Adam S. ;
Loes, Andrea N. ;
Malone, Keara D. ;
Wolf, Caitlin R. ;
Chu, Helen Y. ;
Tortorici, M. Alejandra ;
Veesler, David ;
Murphy, Michael ;
Pettie, Deleah ;
King, Neil P. ;
Balazs, Alejandro B. ;
Bloom, Jesse D. .
VIRUSES-BASEL, 2020, 12 (05)
[8]   Application of a split luciferase complementation assay for the detection of viral protein-protein interactions [J].
Deng, Qiji ;
Wang, Dan ;
Xiang, Xiaoxiao ;
Gao, Xiaofei ;
Hardwidge, Philip R. ;
Kaushik, Radhey S. ;
Wolff, Thorsten ;
Chakravarty, Suvobrata ;
Li, Feng .
JOURNAL OF VIROLOGICAL METHODS, 2011, 176 (1-2) :108-111
[9]   NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells [J].
Dixon, Andrew S. ;
Schwinn, Marie K. ;
Hall, Mary P. ;
Zimmerman, Kris ;
Otto, Paul ;
Lubben, Thomas H. ;
Butler, Braeden L. ;
Binkowski, Brock F. ;
Machleidt, Thomas ;
Kirkland, Thomas A. ;
Wood, Monika G. ;
Eggers, Christopher T. ;
Encell, Lance P. ;
Wood, Keith V. .
ACS CHEMICAL BIOLOGY, 2016, 11 (02) :400-408
[10]  
Gasteiger E, 2005, PROTEOMICS PROTOCOLS, P571, DOI 10.1385/1-59259-584-7:531