Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides

被引:1
作者
Gomez, Alvaro [1 ]
Martinez Ricci, Maria L. [2 ]
Depine, Ricardo A. [2 ]
Lakhtakia, Akhlesh [3 ]
机构
[1] Univ Valladolid, Grp Electromagnetismo Computac, Dept Elect & Elect, E-47011 Valladolid, Spain
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado, RA-1428 Buenos Aires, DF, Argentina
[3] Penn State Univ, Dept Engn Sci & Mech, NanoMM Nanoengineered Metamat Grp, University Pk, PA 16802 USA
关键词
circular waveguides; coaxial waveguides; gap map; negative phase velocity; parallel-plate waveguide; photonic band gap; rectangular waveguide; LEFT-HANDED MATERIALS; PERFECT LENS; INDEX; REFRACTION; METAMATERIAL; CRYSTALS; MEDIA;
D O I
10.1080/09500340903289128
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure: the remaining three types are not of the Bragg type.
引用
收藏
页码:1688 / 1697
页数:10
相关论文
共 40 条
[1]  
Abeles F., 1950, Ann. de Physique, V5, P596, DOI DOI 10.1051/ANPHYS/195012050596
[2]  
[Anonymous], 2004, Optical coating technology
[3]  
[Anonymous], INTRO COMPLEX MEDIUM
[4]  
Caloz C, 2006, ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS: THE ENGINEERING APPROACH, P1
[5]   Observation of total omnidirectional reflection from a one-dimensional dielectric lattice [J].
Chigrin, DN ;
Lavrinenko, AV ;
Yarotsky, DA ;
Gaponenko, S .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 68 (01) :25-28
[6]  
Collin R. E., 1991, FIELD THEORY GUIDED
[7]  
COLLIN RE, 1992, FDN MICROWAVE ENG, pCH4
[8]   Influence of losses on the superresolution performances of an impedance-matched negative-index material [J].
D'Aguanno, Giuseppe ;
Mattiucci, Nadia ;
Bloemer, Mark J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (02) :236-246
[9]   A new condition to identify isotropic dielectiric-magnetic materials displaying negative phase velocity [J].
Depine, RA ;
Lakhtakia, A .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2004, 41 (04) :315-316
[10]   Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals [J].
Depine, Ricardo A. ;
Martinez-Ricci, Maria L. ;
Monsoriu, Juan A. ;
Silvestre, Enrique ;
Andres, Pedro .
PHYSICS LETTERS A, 2007, 364 (3-4) :352-355