THE McCOY CONDITION ON SKEW POLYNOMIAL RINGS

被引:23
作者
Baser, Muhittin [2 ]
Kwak, Tai Keun [3 ]
Lee, Yang [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Afyon Kocatepe Univ, Dept Math, Afyon, Turkey
[3] Daejin Univ, Dept Math, Pochon, South Korea
关键词
McCoy ring; (skew) Polynomial ring; (sigma-)Reversible ring; sigma-Skew McCoy ring; ARMENDARIZ RINGS; EXTENSIONS;
D O I
10.1080/00927870802545661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on a theorem of McCoy on commutative rings, Nielsen called a ring R right McCoy if, for any nonzero polynomials f(x), g(x) over R, f(x)g(x) = 0 implies f(x)r = 0 for some 0 not equal r is an element of R. In this note, we consider a skew version of these rings, called sigma-skew McCoy rings, with respect to a ring endomorphism sigma. When sigma is the identity endomorphism, this coincides with the notion of a right McCoy ring. Basic properties of sigma-skew McCoy rings are observed, and some of the known results on right McCoy rings are obtained as corollaries.
引用
收藏
页码:4026 / 4037
页数:12
相关论文
共 50 条
  • [41] On quasi-Armendariz properties on skew polynomial rings
    Pourtaherian, Hamideh
    Rakhimov, Isamiddin S.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 8 - 11
  • [42] Extensions of linearly McCoy rings
    Cui, Jian
    Chen, Jianlong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) : 1501 - 1511
  • [43] NILPOTENT GRAPHS OF SKEW POLYNOMIAL RINGS OVER NON-COMMUTATIVE RINGS
    Nikmehr, Mohamad Javad
    Azadi, Abdolreza
    TRANSACTIONS ON COMBINATORICS, 2020, 9 (01) : 41 - 48
  • [44] Discriminants and automorphism groups of Veronese subrings of skew polynomial rings
    K. Chan
    A. A. Young
    J. J. Zhang
    Mathematische Zeitschrift, 2018, 288 : 1395 - 1420
  • [45] ON THE NOTION OF COMPLETE INTERSECTION OUTSIDE THE SETTING OF SKEW POLYNOMIAL RINGS
    Vancliff, Michaela
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 460 - 470
  • [46] Discriminants and automorphism groups of Veronese subrings of skew polynomial rings
    Chan, K.
    Young, A. A.
    Zhang, J. J.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 1395 - 1420
  • [47] SKEW LAURENT POLYNOMIAL EXTENSIONS OF BAER AND PP-RINGS
    Nasr-Isfahani, Alireza R.
    Moussavi, Ahmad
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (06) : 1041 - 1050
  • [48] THE McCOY CONDITION ON ORE EXTENSIONS
    Habibi, M.
    Moussavi, A.
    Alhevaz, A.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) : 124 - 141
  • [49] ON ANNIHILATIONSN OF IDEALS IN SKEW MONOID RINGS
    Mohammadi, Rasul
    Moussavi, Ahmad
    Zahiri, Masoome
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 381 - 401
  • [50] Power-serieswise McCoy Rings
    Yang, Shizhou
    Song, Xuemei
    Liu, Zhongkui
    ALGEBRA COLLOQUIUM, 2011, 18 (02) : 301 - 310