THE McCOY CONDITION ON SKEW POLYNOMIAL RINGS

被引:23
|
作者
Baser, Muhittin [2 ]
Kwak, Tai Keun [3 ]
Lee, Yang [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Afyon Kocatepe Univ, Dept Math, Afyon, Turkey
[3] Daejin Univ, Dept Math, Pochon, South Korea
关键词
McCoy ring; (skew) Polynomial ring; (sigma-)Reversible ring; sigma-Skew McCoy ring; ARMENDARIZ RINGS; EXTENSIONS;
D O I
10.1080/00927870802545661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on a theorem of McCoy on commutative rings, Nielsen called a ring R right McCoy if, for any nonzero polynomials f(x), g(x) over R, f(x)g(x) = 0 implies f(x)r = 0 for some 0 not equal r is an element of R. In this note, we consider a skew version of these rings, called sigma-skew McCoy rings, with respect to a ring endomorphism sigma. When sigma is the identity endomorphism, this coincides with the notion of a right McCoy ring. Basic properties of sigma-skew McCoy rings are observed, and some of the known results on right McCoy rings are obtained as corollaries.
引用
收藏
页码:4026 / 4037
页数:12
相关论文
共 50 条
  • [1] α-Skew π-McCoy Rings
    Abduldaim, Areej M.
    Chen, Sheng
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [2] On Skew McCoy Rings
    Xue Mei SONG 1
    2.College of Mathematics and Information Science
    Journal of Mathematical Research with Applications, 2011, (02) : 323 - 329
  • [3] SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) : 879 - 897
  • [4] ON WEAK α-SKEW MCCOY RINGS
    Nikmehr, Mohammad Javad
    Nejati, Ali
    Deldar, Mansoureh
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 221 - 228
  • [5] Nilpotent Elements and Skew Polynomial Rings
    Alhevaz, A.
    Moussavi, A.
    Hashemi, E.
    ALGEBRA COLLOQUIUM, 2012, 19 : 821 - 840
  • [6] Radicals of skew polynomial rings and skew Laurent polynomial rings
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    JOURNAL OF ALGEBRA, 2011, 331 (01) : 428 - 448
  • [8] RADICALS OF SKEW POLYNOMIAL AND SKEW LAURENT POLYNOMIAL RINGS OVER SKEW ARMENDARIZ RINGS
    Nasr-Isfahani, A. R.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 1337 - 1349
  • [9] On McCoy condition and semicommutative rings
    Louzari, Mohamed
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2013, 54 (03): : 329 - 337
  • [10] THE McCOY CONDITION ON NONCOMMUTATIVE RINGS
    Hong, Chan Yong
    Jeon, Young Cheol
    Kim, Nam Kyun
    Lee, Yang
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1809 - 1825