Particle-number-conserving Bogoliubov approximation for Bose-Einstein condensates using extended catalytic states

被引:6
作者
Jiang, Zhang [1 ,2 ,3 ]
Caves, Carlton M. [1 ,4 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, MSC07-4220, Albuquerque, NM 87131 USA
[2] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Mail Stop 269-1, Moffett Field, CA 94035 USA
[3] Stinger Ghaffarian Technol Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA
[4] Univ Queensland, Sch Math & Phys, Ctr Engineered Quantum Syst, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会;
关键词
2-PHOTON QUANTUM OPTICS; GROSS-PITAEVSKII; ENTANGLEMENT; PHASE; FORMALISM; VALIDITY; DYNAMICS; LIMITS; GASES;
D O I
10.1103/PhysRevA.93.033623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We encode the many-body wave function of a Bose-Einstein condensate (BEC) in the N-particle sector of an extended catalytic state. This catalytic state is a coherent state for the condensate mode and an arbitrary state for the modes orthogonal to the condensate mode. Going to a time-dependent interaction picture where the state of the condensate mode is displaced to the vacuum, we can organize the effective Hamiltonian by powers of N-1/2. Requiring the terms of order N-1/2 to vanish gives the Gross-Pitaevskii equation. Going to the next order, N-0, we derive equations for the number-conserving Bogoliubov approximation, first given by Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. In contrast to other approaches, ours is well suited to calculating the state evolution in the Schrodinger picture; moreover, it is straightforward to generalize our method to multicomponent BECs and to higher-order corrections.
引用
收藏
页数:18
相关论文
共 49 条
  • [1] [Anonymous], ARXIV150206924
  • [2] [Anonymous], QUANTUM GASES COLD A
  • [3] [Anonymous], 2002, THESIS U AARHUS
  • [4] Second-order number-conserving description of nonequilibrium dynamics in finite-temperature Bose-Einstein condensates
    Billam, T. P.
    Mason, P.
    Gardiner, S. A.
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [5] Bogoliubov N., 1947, J. Phys., V11, P23
  • [6] Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach
    Castin, Y
    Dum, R
    [J]. PHYSICAL REVIEW A, 1998, 57 (04): : 3008 - 3021
  • [7] Castin Y, 2001, LES HOUCH S, V72, P5
  • [8] Instability and depletion of an excited Bose-Einstein condensate in a trap
    Castin, Y
    Dum, R
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (19) : 3553 - 3556
  • [9] NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES
    CAVES, CM
    SCHUMAKER, BL
    [J]. PHYSICAL REVIEW A, 1985, 31 (05) : 3068 - 3092
  • [10] Collective excitations of Bose-Einstein condensates in a double-well potential
    Danshita, I
    Egawa, K
    Yokoshi, N
    Kurihara, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (12) : 3179 - 3185