ASTEC simulation of fission product source term ruthenium in coolant in severe accident

被引:2
|
作者
Hu, Wenchao [1 ]
Zhao, Chuanqi [1 ]
Bi, Jinsheng [1 ]
Zhang, Pan [1 ]
Shi, Xingwei [1 ]
Pan, Xinyi [1 ]
Song, Wei [1 ]
Yi, Yan [1 ]
机构
[1] Nucl & Radiat Safety Ctr MEE, Beijing 100082, Peoples R China
关键词
SCALE code; ASTEC code; Severe accident; Source term; Ruthenium; Aerosol; SOPHAEROS; FUEL;
D O I
10.1016/j.anucene.2019.06.063
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
We calculate the accumulation of ruthenium-106 with SCALE code and analyze the distribution of ruthenium-106 under different injection temperatures with ASTEC code. In deposited aerosol phase, the RuO and RuO2 increase with temperature, however the RuO3 increases rapidly and reaches equilibrium at a certain temperature of injection source. In suspended aerosol phase, the accumulation of RuO and RuO2 decreases continuously with rising of temperature, while RuO3 reaches the maximum at 750 degrees C. In gaseous phase, the masses of RuO and RuO2 increase and reach equilibrium rapidly. Similar to gaseous aerosol phase, the accumulation of RuO3 reaches to the maximum value at 750 degrees C. RuO4 appears when the temperature above 750 degrees C and the RuO4 mass at 900 degrees C are three times more than that of at 750 degrees C. Our results denote that a reasonable control of thermal-hydraulics parameters and redox conditions can effectively constrain the radionuclide ruthenium migration. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:658 / 664
页数:7
相关论文
共 50 条
  • [1] ASTEC V2 severe accident integral code: Fission product modelling and validation
    Cantrel, L.
    Cousin, F.
    Bosland, L.
    Chevalier-Jabet, K.
    Marchetto, C.
    NUCLEAR ENGINEERING AND DESIGN, 2014, 272 : 195 - 206
  • [2] THE ASTEC INTEGRAL CODE FOR SEVERE ACCIDENT SIMULATION
    Van Dorsselaere, J. P.
    Seropian, C.
    Chatelard, P.
    Jacq, F.
    Fleurot, J.
    Giordano, P.
    NUCLEAR TECHNOLOGY, 2009, 165 (03) : 293 - 307
  • [3] Simulation of Loss-of-Coolant Accident in Spent Fuel Pool with ASTEC Code
    Kljenak, Ivo
    Matkovic, Marko
    26TH INTERNATIONAL CONFERENCE NUCLEAR ENERGY FOR NEW EUROPE (NENE 2017), 2017,
  • [4] VALIDATION STATUS OF THE ASTEC INTEGRAL CODE FOR SEVERE ACCIDENT SIMULATION
    Van Dorsselaere, J. P.
    Chatelard, P.
    Cranga, M.
    Guillard, G.
    Tregoures, N.
    Bosland, L.
    Brillant, G.
    Girault, N.
    Bentaib, A.
    Reinke, N.
    Luther, W.
    NUCLEAR TECHNOLOGY, 2010, 170 (03) : 397 - 415
  • [5] Simulation of the DEBRIS Experiments with the Severe Accident Analysis Code ASTEC
    Peschel, Jan M.
    Koch, Marco K.
    ATW-INTERNATIONAL JOURNAL FOR NUCLEAR POWER, 2020, 65 (11-12): : 578 - 582
  • [6] Source term in severe accident induced by large break loss of coolant accident for nuclear power plant
    School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    Yuanzineng Kexue Jishu, 2009, 7 (609-615):
  • [7] FISSION-PRODUCT SOURCE TERMS FOR THE LIGHT WATER-REACTOR LOSS-OF-COOLANT ACCIDENT
    LORENZ, RA
    COLLINS, JL
    MALINAUSKAS, AP
    NUCLEAR TECHNOLOGY, 1979, 46 (03) : 404 - 410
  • [8] LWR SEVERE ACCIDENT SIMULATION FISSION PRODUCT BEHAVIOR IN FPT2 EXPERIMENT
    Girault, N.
    Bosland, L.
    Dienstbier, J.
    Dubourg, R.
    Fiche, C.
    NUCLEAR TECHNOLOGY, 2010, 169 (03) : 218 - 238
  • [9] Revaporisation of fission product deposits in the primary circuit and its impact on accident source term
    Bottomley, P. D. W.
    Knebel, K.
    Van Winckel, S.
    Haste, T.
    Souvi, S. M. O.
    Auvinen, A.
    Kalilainen, J.
    Karkela, T.
    ANNALS OF NUCLEAR ENERGY, 2014, 74 : 208 - 223
  • [10] Simulation of THAI Hydrogen Deflagration Experiments using ASTEC Severe Accident Code
    Kljenak, Ivo
    26TH INTERNATIONAL CONFERENCE NUCLEAR ENERGY FOR NEW EUROPE (NENE 2017), 2017,