Aprotic and Protic Ionic Liquids Combined with Olive Pits Derived Hard Carbon for Potassium-Ion Batteries

被引:21
作者
Arnaiz, Maria [1 ,2 ,7 ]
Bothe, Annika [3 ,4 ]
Dsoke, Sonia [5 ,6 ]
Balducci, Andrea [3 ,4 ]
Ajuria, Jon [1 ]
机构
[1] CIC energiGUNE, Albert Einstein 48,Technol Pk Alava, Minano 01510, Alava, Spain
[2] Univ Basque Country, UPV EHU, Chem Engn Dept, Bilbao 48080, Spain
[3] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, D-07743 Jena, Germany
[4] Jena Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC, D-07743 Jena, Germany
[5] KIT, IAM, D-76344 Eggenstein Leopoldshafen, Germany
[6] Helmholtz Inst Ulm Electrochem Energy Storage HIU, D-89081 Ulm, Germany
[7] CIDETEC, Paseo Miramon 196,Technol Pk Gipuzkoa, San Sebastian 20014, Spain
关键词
LITHIUM; INTERCALATION; ELECTRODES; ANODES; SODIUM; PERFORMANCE; CHALLENGES; CAPACITORS; INSERTION; ENERGY;
D O I
10.1149/2.1041914jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work we report the use of the aprotic ionic liquid (AIL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr(14)TFSI) and the protic ionic liquid (PIL) 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr(H4)TFSI) in view of the realization of potassium ion batteries. Physicochemical characterization of electrolytes reveals features comparable to those obtained for lithium and sodium ion technologies. Electrochemical performance is evaluated in combination with olive pits derived hard carbon electrodes with and without a film-forming additive at room temperature and at 60 degrees C. Similar to our previous study, the use of PyrH(4)TFSI is not applicable due to the lack of electrochemical stability below 2 V vs. K+/K, while reversible K+ insertion/deinsertion is demonstrated for Pyr(14)TFSI. Electrochemical impedance spectroscopy and post-mortem analysis reveal an unstable formation of the solid electrolyte interphase within the HC electrode. (C) 2019 The Electrochemical Society.
引用
收藏
页码:A3504 / A3510
页数:7
相关论文
共 38 条
[1]   Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits [J].
Ajuria, Jon ;
Redondo, Edurne ;
Arnaiz, Maria ;
Mysyk, Roman ;
Rojo, Teofilo ;
Goikolea, Eider .
JOURNAL OF POWER SOURCES, 2017, 359 :17-26
[2]  
[Anonymous], ADV ENERGY MAT
[3]   Protic and Aprotic Ionic Liquids in Combination with Hard Carbon for Lithium-Ion and Sodium-Ion Batteries [J].
Arnaiz, Maria ;
Huang, Peihua ;
Ajuria, Jon ;
Rojo, Teofilo ;
Goikolea, Eider ;
Balducci, Andrea .
BATTERIES & SUPERCAPS, 2018, 1 (06) :204-208
[4]   Ionic Liquids in Lithium-Ion Batteries [J].
Balducci, Andrea .
TOPICS IN CURRENT CHEMISTRY, 2017, 375 (02)
[5]   Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance [J].
Burns, J. C. ;
Petibon, R. ;
Nelson, K. J. ;
Sinha, N. N. ;
Kassam, Adil ;
Way, B. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1668-A1674
[6]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[7]   Potassium Secondary Batteries [J].
Eftekhari, Ali ;
Jian, Zelang ;
Ji, Xiulei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) :4404-4419
[8]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[9]   Experimental and Theoretical Investigation on the Origin of the High Intercalation Voltage of K2Zn3[Fe(CN)6]2 Cathode [J].
Islas-Vargas, Claudia ;
Guevara-Garcia, Alfredo ;
Oliver-Tolentino, M. ;
Ramos-Sanchez, G. ;
Gonzalez, I. ;
Galvan, Marcelo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166 (03) :A5139-A5145
[10]   Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode [J].
Jian, Zelang ;
Xing, Zhenyu ;
Bommier, Clement ;
Li, Zhifei ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)