Experimental measurement of the Berry curvature from anomalous transport

被引:0
|
作者
Wimmer, Martin [1 ,2 ]
Price, Hannah M. [3 ,4 ]
Carusotto, Iacopo [3 ,4 ]
Peschel, Ulf [2 ]
机构
[1] Erlangen Grad Sch Adv Opt Technol SAOT, D-91058 Erlangen, Germany
[2] Friedrich Schiller Univ Jena, Inst Solid State Theory & Opt, Abbe Ctr Photon, Max Wien Pl 1, D-07743 Jena, Germany
[3] Univ Trento, INO CNR BEC Ctr, Via Sommarive 14, I-38123 Povo, Italy
[4] Univ Trento, Dept Phys, Via Sommarive 14, I-38123 Povo, Italy
基金
欧盟地平线“2020”;
关键词
EDGE STATES; ULTRACOLD FERMIONS; BLOCH BAND; PHASE; PHOTONICS; TOPOLOGY;
D O I
10.1038/NPHYS4050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometric properties of energy bands underlie fascinating phenomena in many systems, including solid-state, ultracold gases and photonics. The local geometric characteristics such as the Berry curvature(1) can be related to global topological invariants such as those classifying the quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a coherent wavepacket. Here, we experimentally demonstrate that the wavepacket dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time evolution of a wavepacket in a one-dimensional geometric 'charge' pump, where the Berry curvature leads to an anomalous displacement of the wavepacket. This is both the first direct observation of Berry curvature effects in an optical system, and a proof-of-principle demonstration that wavepacket dynamics can serve as a high-resolution tool for mapping out geometric properties.
引用
收藏
页码:545 / 550
页数:6
相关论文
共 50 条
  • [41] Berry curvature for coupled waves of magnons and electromagnetic waves
    Okamoto, Akihiro
    Shindou, Ryuichi
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2020, 102 (06)
  • [42] Next Nearest Neighbors Effects on Berry Curvature of Graphene
    Farajollahpour, T.
    Rezvani, A. H.
    Khodarahmi, M. R.
    Arasteh, M.
    ACTA PHYSICA POLONICA A, 2012, 122 (01) : 180 - 183
  • [43] Experimental Observation of Hidden Berry Curvature in Inversion-Symmetric Bulk 2H-WSe2
    Cho, Soohyun
    Park, Jin-Hong
    Hong, Jisook
    Jung, Jongkeun
    Kim, Beom Seo
    Han, Garam
    Kyung, Wonshik
    Kim, Yeongkwan
    Mo, S. -K.
    Denlinger, J. D.
    Shim, Ji Hoon
    Han, Jung Hoon
    Kim, Changyoung
    Park, Seung Ryong
    PHYSICAL REVIEW LETTERS, 2018, 121 (18)
  • [44] Observation of Berry curvature in non-Hermitian system from far-field radiation
    Yin, Xuefan
    Chen, Ye
    Zhang, Xiaoyu
    Zhang, Zixuan
    Noda, Susumu
    Peng, Chao
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [45] Diffusive real-time dynamics of a particle with Berry curvature
    Misaki, Kou
    Miyashita, Seiji
    Nagaosa, Naoto
    PHYSICAL REVIEW B, 2018, 97 (07)
  • [46] Calculating the Berry curvature of Bloch electrons using the KKR method
    Gradhand, M.
    Fedorov, D. V.
    Pientka, F.
    Zahn, P.
    Mertig, I.
    Gyoerffy, B. L.
    PHYSICAL REVIEW B, 2011, 84 (07)
  • [47] Manipulating Berry curvature in hBN/bilayer graphene commensurate heterostructures
    Kareekunnan, Afsal
    Muruganathan, Manoharan
    Mizuta, Hiroshi
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [48] Semiclassical dynamics, Berry curvature, and spiral holonomy in optical quasicrystals
    Spurrier, Stephen
    Cooper, Nigel R.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [49] Topological linear magnetoresistivity and thermoconductivity induced by noncentrosymmetric Berry curvature
    Yang, Min-Xue
    Li, Hai-Dong
    Luo, Wei
    Miao, Bingfeng
    Chen, Wei
    Xing, D. Y.
    PHYSICAL REVIEW B, 2023, 107 (16)
  • [50] Role of Berry curvature in the generation of spin currents in Rashba systems
    Kapri, Priyadarshini
    Dey, Bashab
    Ghosh, Tarun Kanti
    PHYSICAL REVIEW B, 2021, 103 (16)