Influence of the Dithiolate Bridge on the Oxidative Processes of Diiron Models Related to the Active Site of [FeFe] Hydrogenases

被引:16
作者
Arrigoni, Federica [2 ]
Bouh, Salma Mohamed [1 ]
De Gioia, Luca [2 ]
Elleouet, Catherine [1 ]
Petillon, Franois Y. [1 ]
Schollhammer, Philippe [1 ]
Zampella, Giuseppe [2 ]
机构
[1] Univ Bretagne Occidentale, UMR CNRS Chim Electrochim Mol & Chim Analyt 6521, UFR Sci & Tech, 6 Ave Victor Gorgeu,CS 93837, F-29238 Brest 3, France
[2] Univ Milano Bicocca, Dept Biotechnol & Biosci, Piazza Sci 2, I-20126 Milan, Italy
关键词
bridging ligands; density functional theory; electrochemistry; enzyme models; oxidation; H-OX STATE; PROTON-REDUCTION; MIXED-VALENT; COMPLEXES RELEVANT; REDOX PROPERTIES; H-2; ACTIVATION; IRON; CARBONYL; APPROXIMATION; FE(II)FE(I);
D O I
10.1002/chem.201605060
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical studies of [Fe-2(CO)(4)(kappa(2)-dmpe)(mu-di-thiolate)] (dithiolate=adt(Bn), pdt) and density functional theory (DFT) calculations reveal the striking influence of an amine functionality in the dithiolate bridge on their oxidative properties. [Fe-2(CO)(4)(kappa(2)-dmpe)(mu-adt(Bn))] (1) undergoes two one-electron oxidation steps, with the first being partially reversible and the second irreversible. When the adtBn bridge is replaced with pdt, a shift of 60 mV towards more positive potentials is observed for the first oxidation whereas 290 mV separate the oxidation potentials of the two cations. Under CO, oxidation of azadithiolate compound 1 occurs according to an ECE process whereas an EC mechanism takes place for the propanedithiolate species 2. The dication species [1-CO](2+) resulting from the two-electron oxidation of 1 has been spectroscopically and structurally characterized. The molecular details underlying the reactivity of oxidized species have been explored by DFT calculations. The differences in the behaviors of 1 and 2 are mainly due to the presence, or not, of favored interactions between the dithiolate bridge and the diiron site depending on the redox states, (FeFeII)-Fe-I or (FeFeII)-Fe-II, of the complexes.
引用
收藏
页码:4364 / 4372
页数:9
相关论文
共 56 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]  
[Anonymous], 2002, ESSENTIALS COMPUTATI
[3]  
[Anonymous], 2007, ANGEW CHEM, V119, P6264
[4]  
[Anonymous], 2008, ANGEW CHEM, V120, P9634
[5]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[6]   Diferrous cyanides as models for the Fe-only hydrogenases [J].
Boyke, CA ;
van der Vlugt, JI ;
Rauchfuss, TB ;
Wilson, SR ;
Zampella, G ;
De Gioia, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (31) :11010-11018
[7]   Agostic interactions in transition metal compounds [J].
Brookhart, Maurice ;
Green, Malcolm L. H. ;
Parkin, Gerard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (17) :6908-6914
[8]   Combining acid-base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase [J].
Camara, James M. ;
Rauchfuss, Thomas B. .
NATURE CHEMISTRY, 2012, 4 (01) :26-30
[9]   Mild Redox Complementation Enables H2 Activation by [FeFe]-Hydrogenase Models [J].
Camara, James M. ;
Rauchfuss, Thomas B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (21) :8098-8101
[10]  
Capon J.-F., 2008, CR CHIM, V11, P842