Interior-Point Lagrangian Decomposition Method for Separable Convex Optimization

被引:46
|
作者
Necoara, I. [1 ,2 ]
Suykens, J. A. K. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, B-3001 Louvain, Belgium
[2] Univ Politehn Bucuresti, Automat Control & Syst Engn Dept, Bucharest 060042, Romania
关键词
Separable convex optimization; Self-concordant functions; Interior-point methods; Augmented Lagrangian decomposition; Parallel computations;
D O I
10.1007/s10957-009-9566-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian, we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newton method for tracing the central path. We show that the new algorithm is globally convergent and highly parallelizable and thus it is suitable for solving large-scale separable convex problems.
引用
收藏
页码:567 / 588
页数:22
相关论文
共 50 条
  • [21] A Wide Neighborhood Interior-Point Algorithm for Convex Quadratic Semidefinite Optimization
    Mohammad Pirhaji
    Maryam Zangiabadi
    Hossien Mansouri
    Ali Nakhaei
    Ali Shojaeifard
    Journal of the Operations Research Society of China, 2020, 8 : 145 - 164
  • [22] An augmented Lagrangian interior-point method using directions of negative curvature
    Javier M. Moguerza
    Francisco J. Prieto
    Mathematical Programming, 2003, 95 : 573 - 616
  • [23] An augmented Lagrangian interior-point method using directions of negative curvature
    Moguerza, JM
    Prieto, FJ
    MATHEMATICAL PROGRAMMING, 2003, 95 (03) : 573 - 616
  • [24] ON FULL JACOBIAN DECOMPOSITION OF THE AUGMENTED LAGRANGIAN METHOD FOR SEPARABLE CONVEX PROGRAMMING
    He, Bingsheng
    Hou, Liusheng
    Yuan, Xiaoming
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2274 - 2312
  • [25] A Combined Homotopy Infeasible Interior-Point Method for Convex Nonlinear Programming
    杨轶华
    吕显瑞
    刘庆怀
    NortheasternMathematicalJournal, 2006, (02) : 188 - 192
  • [26] INTERIOR-POINT METHODS FOR CONVEX-PROGRAMMING
    JARRE, F
    APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 26 (03): : 287 - 311
  • [27] A POLYNOMIAL-TIME INTERIOR-POINT ALGORITHM FOR CONVEX QUADRATIC SEMIDEFINITE OPTIMIZATION
    Bai, Y. Q.
    Wang, F. Y.
    Luo, X. W.
    RAIRO-OPERATIONS RESEARCH, 2010, 44 (03) : 251 - 265
  • [28] Inexact interior-point method
    Bellavia, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (01) : 109 - 121
  • [29] Inexact Interior-Point Method
    S. Bellavia
    Journal of Optimization Theory and Applications, 1998, 96 : 109 - 121
  • [30] A Faster Interior-Point Method for Sum-of-Squares Optimization
    Shunhua Jiang
    Bento Natura
    Omri Weinstein
    Algorithmica, 2023, 85 : 2843 - 2884