Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice

被引:584
作者
Trouiller, Benedicte [1 ]
Reliene, Ramune [1 ,3 ]
Westbrook, Aya [1 ,4 ]
Solaimani, Parrisa [1 ,4 ]
Schiestl, Robert H. [1 ,2 ,5 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiat Oncol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Ctr Human Nutr, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Sch Publ Hlth, Interdept Program Mol Toxicol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Sch Publ Hlth, Dept Environm Hlth Sci, Los Angeles, CA 90095 USA
关键词
N-ACETYL CYSTEINE; ULTRAFINE TIO2 PARTICLES; MANUFACTURED NANOPARTICLES; CELLULAR TOXICITY; OXIDATIVE STRESS; CARBON-BLACK; GENOTOXICITY; INFLAMMATION; EXPOSURE; SURFACE;
D O I
10.1158/0008-5472.CAN-09-2496
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Titanium dioxide (TiO2) nanoparticles are manufactured worldwide in large quantities for use in a wide range of applications including pigment and cosmetic manufacturing. Although TiO2 is chemically inert, TiO2 nanoparticles can cause negative health effects, such as respiratory tract cancer in rats. However, the mechanisms involved in TiO2-induced genotoxicity and carcinogenicity have not been clearly defined and are poorly studied in vivo. The present study investigates TiO2 nanoparticles-induced genotoxicity, oxidative DNA damage, and inflammation in a mice model. We treated wild-type mice with TiO2 nanoparticles in drinking water and determined the extent of DNA damage using the comet assay, the micronuclei assay, and the gamma-H2AX immunostaining assay and by measuring 8-hydroxy-2'-deoxygnanosine levels and, as a genetic instability endpoint, DNA deletions. We also determined mRNA levels of inflammatory cytokines in the peripheral blood. Our results show that TiO2 nanoparticles induced 8-hydroxy-2'-deoxyguanosine, gamma-H2AX foci, micronuclei, and DNA deletions. The formation of gamma-H2AX foci, indicative of DNA double-strand breaks, was the most sensitive parameter. Inflammation was also present as characterized by a moderate inflammatory response. Together, these results describe the first comprehensive study of TiO2 nanoparticles-induced genotoxicity in vivo in mice possibly caused by a secondary genotoxic mechanism associated with inflammation and/or oxidative stress. Given the growing use of TiO2 nanoparticles, these findings raise concern about potential health hazards associated with TiO2 nanoparticles exposure. [Cancer Res 2009;69(22):8784-9]
引用
收藏
页码:8784 / 8789
页数:6
相关论文
共 46 条
[1]   Carcinogenicity of carbon black, titanium dioxide, and talc [J].
Baan, R ;
Straif, K ;
Grosse, Y ;
Secretan, W ;
El Ghissassi, F ;
Cogliano, V .
LANCET ONCOLOGY, 2006, 7 (04) :295-296
[2]   Mortality among workers employed in the titanium dioxide production industry in Europe [J].
Boffetta, P ;
Soutar, A ;
Cherrie, JW ;
Granath, F ;
Andersen, A ;
Anttila, A ;
Blettner, M ;
Gaborieau, V ;
Klug, SJ ;
Langard, S ;
Luce, D ;
Merletti, F ;
Miller, B ;
Mirabelli, D ;
Pukkala, E ;
Adami, HO ;
Weiderpass, E .
CANCER CAUSES & CONTROL, 2004, 15 (07) :697-706
[3]   Inhaled particles and lung cancer, part B: Paradigms and risk assessment [J].
Borm, PJA ;
Schins, RPF ;
Albrecht, C .
INTERNATIONAL JOURNAL OF CANCER, 2004, 110 (01) :3-14
[4]   OXIDATIVE MUTAGENS INDUCE INTRACHROMOSOMAL RECOMBINATION IN YEAST [J].
BRENNAN, RJ ;
SWOBODA, BEP ;
SCHIESTL, RH .
MUTATION RESEARCH, 1994, 308 (02) :159-167
[5]   Titanium dioxide nanoparticles induce emphysema-like lung injury in mice [J].
Chen, Huei-Wen ;
Su, Sheng-Fang ;
Chien, Chiang-Ting ;
Lin, Wei-Hsiang ;
Yu, Sung-Liang ;
Chou, Cheng-Chung ;
Chen, Jeremy J. W. ;
Yang, Pan-Chyr .
FASEB JOURNAL, 2006, 20 (13) :2393-+
[6]   Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles [J].
Chen, M ;
von Mikecz, A .
EXPERIMENTAL CELL RESEARCH, 2005, 305 (01) :51-62
[7]   An approach to risk assessment for TiO2 [J].
Dankovic, David ;
Kuempel, Eileen ;
Wheeler, Matthew .
INHALATION TOXICOLOGY, 2007, 19 :205-212
[8]   Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice [J].
de Haar, C. ;
Hassing, I. ;
Bol, M. ;
Bleumink, R. ;
Pieters, R. .
CLINICAL AND EXPERIMENTAL ALLERGY, 2006, 36 (11) :1469-1479
[9]   The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types [J].
Dick, CAJ ;
Brown, DM ;
Donaldson, K ;
Stone, V .
INHALATION TOXICOLOGY, 2003, 15 (01) :39-52
[10]   Free radical activity associated with the surface of particles: A unifying factor in determining biological activity? [J].
Donaldson, K ;
Beswick, PH ;
Gilmour, PS .
TOXICOLOGY LETTERS, 1996, 88 (1-3) :293-298