Patterning of platinum microelectrodes in polymeric microfluidic chips

被引:7
作者
Al Mamun, Nazmul Huda [1 ]
Dutta, Prashanta [1 ]
机构
[1] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
来源
JOURNAL OF MICROLITHOGRAPHY MICROFABRICATION AND MICROSYSTEMS | 2006年 / 5卷 / 03期
基金
美国国家科学基金会;
关键词
PDMS; Pt-electrode; microfluidic chip; strip off;
D O I
10.1117/1.2242633
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Miniaturized electrodes are one of the most important components of "lab-on-a-chip" devices for separation, pumping, sensing, and other bioanalyses. In microfluidic-based chemical and bioanalytical operations, platinum electrodes are preferred to minimize the interaction with chemicals or biomolecules due to their chemical inertness. Although microfabrication techniques for patterning integrated platinum microelectrodes on silicon, quartz, or glass substrates are available, no techniques have been reported so far for depositing platinum electrodes in soft polymeric microchannels. A novel fabrication scheme is described for forming integrated microelectrodes in a poly-dimethylsiloxane (PDMS) microchip. The electrode fabrication technique consists of photolithography, thermal processing, sequential sputtering of titanium and platinum, and stripping off photoresist, while soft lithography is used to form the microfluidic channels on PDMS. This approach facilitates precise positioning of the electrodes with a micron-size gap between them, and it can be used for both low and high aspect ratio channels. Platinum electrodes, formed on the PDMS channel surface, demonstrate very good interfacial adhesion with the substrate due to the use of a very thin titanium layer between the platinum and PDMS. The sputtered electrodes have a surface roughness of 50 nm and are able to sense picoA level current through benzene. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Polymer microfluidic devices [J].
Becker, H ;
Locascio, LE .
TALANTA, 2002, 56 (02) :267-287
[2]  
Brahmasandra SN, 2001, ELECTROPHORESIS, V22, P300, DOI 10.1002/1522-2683(200101)22:2<300::AID-ELPS300>3.0.CO
[3]  
2-F
[4]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[5]   Micro devices integrated with microchannels and electrospray nozzles using PDMS casting techniques [J].
Chiou, CH ;
Lee, GB ;
Hsu, HT ;
Chen, PW ;
Liao, PC .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 86 (2-3) :280-286
[6]   Microfabricated devices in biotechnology and biochemical processing [J].
Chován, T ;
Guttman, A .
TRENDS IN BIOTECHNOLOGY, 2002, 20 (03) :116-122
[7]   Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip [J].
Cui, HC ;
Horiuchi, K ;
Dutta, P ;
Ivory, CF .
ANALYTICAL CHEMISTRY, 2005, 77 (05) :1303-1309
[8]   Integration of microfabricated needle-type glucose sensor devices with a novel thin-film Ag/AgCl electrode and plasma-polymerized thin film: mass production techniques [J].
Hiratsuka, A ;
Kojima, K ;
Suzuki, H ;
Muguruma, H ;
Ikebukuro, K ;
Karube, I .
ANALYST, 2001, 126 (05) :658-663
[9]   Rapid microfluidic mixing [J].
Johnson, TJ ;
Ross, D ;
Locascio, LE .
ANALYTICAL CHEMISTRY, 2002, 74 (01) :45-51
[10]   Soft-contact optical lithography using transparent elastomeric stamps: application to nanopatterned organic light-emitting devices [J].
Lee, TW ;
Jeon, S ;
Maria, J ;
Zaumseil, J ;
Hsu, JWP ;
Rogers, JA .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (09) :1435-1439