On the diophantine equation xn-1/x-1=yq

被引:21
作者
Bugeaud, Y [1 ]
Mignotte, M [1 ]
Roy, Y [1 ]
机构
[1] Univ Strasbourg 1, F-67084 Strasbourg, France
关键词
D O I
10.2140/pjm.2000.193.257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if (x, y, n, q) not equal (18, 7, 3, 3) is a solution of the Diophantine equation (x(n) - 1)/(x - 1) = y(q) with q prime, then there exists a prime number p such that p divides x and q divides p - 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy computer calculations.
引用
收藏
页码:257 / 268
页数:12
相关论文
共 22 条
[1]  
BENNETT M, IN PRESS J REINE ANG
[2]   On the diophantine equation |axn-byn|=1 [J].
Bennett, MA ;
De Weger, BMM .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :413-438
[3]   Effective lower bounds of the p-adic distance between powers of algebraic numbers [J].
Bugeaud, Y ;
Laurent, M .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :311-342
[4]   Linear forms in p-adic logarithms and the Diophantine equation xn-1/x-1=yq [J].
Bugeaud, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :373-381
[5]   The equation xn-1/x-1=yq has no solution with x square [J].
Bugeaud, Y ;
Mignotte, M ;
Roy, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :353-372
[6]  
BUGEAUD Y, IN PRESS MATHEMATIKA
[7]   PROBLEMS AND SOME RESULTS CONCERNING THE DIOPHANTINE EQUATION 1+A+A2+...+AX-1=PY [J].
EDGAR, H .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1985, 15 (02) :327-329
[8]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311
[9]  
LE MH, 1995, ACTA ARITH, V69, P91
[10]   A NOTE ON THE DIOPHANTINE EQUATION X(M)-1/X-1=Y(N) [J].
LE, MH .
ACTA ARITHMETICA, 1993, 64 (01) :19-28