A New Generalization of Geometric Distribution with Properties and Applications

被引:36
作者
Altun, Emrah [1 ]
机构
[1] Bartin Univ, Dept Stat, Bartin, Turkey
关键词
INAR(1) process; Conditional maximum likelihood; Over-dispersion; Binomial thinning; POISSON INAR(1) PROCESSES; TIME-SERIES; UNDERDISPERSION; EQUIDISPERSION; MODEL;
D O I
10.1080/03610918.2019.1639739
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study, a new two-parameter mixed-Poisson distribution is proposed. Statistical properties of the proposed distribution are studied comprehensively. The maximum likelihood estimation method is used to estimate unknown model parameters. A simulation study is conducted to evaluate the asymptotic efficiencies of the maximum likelihood estimators of model parameters. The usefulness of proposed distribution is demonstrated in first-order integer-valued autoregressive process, shortly INAR(1). Empirical findings show that the proposed INAR(1) process provides better results than other competitive models when the time series of counts display over-dispersion.
引用
收藏
页码:793 / 807
页数:15
相关论文
共 17 条
[1]  
AlOsh MA., 1987, Journal of Time Series Analysis, V8, P261, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/JTSA.1987.8.ISSUE-3]
[2]   A parametric time series model with covariates for integers in Z [J].
Andersson, Jonas ;
Karlis, Dimitris .
STATISTICAL MODELLING, 2014, 14 (02) :135-156
[3]   A generalised NGINAR(1) process with inflated-parameter geometric counting series [J].
Borges, Patrick ;
Bourguignon, Marcelo ;
Molinares, Fabio Fajardo .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2017, 59 (01) :137-150
[4]   Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion [J].
Bourguignon, Marcelo ;
Rodrigues, Josemar ;
Santos-Neto, Manoel .
JOURNAL OF APPLIED STATISTICS, 2019, 46 (01) :101-118
[5]   An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion [J].
Bourguignon, Marcelo ;
Weiss, Christian H. .
TEST, 2017, 26 (04) :847-868
[6]   ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATIONS FOR INDEPENDENT NOT IDENTICALLY DISTRIBUTED CASE [J].
HOADLEY, B .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1977-&
[7]  
Jazi MA, 2012, JIRSS-J IRAN STAT SO, V11, P173
[8]   First-order integer valued AR processes with zero inflated poisson innovations [J].
Jazi, Mansour Aghababaei ;
Jones, Geoff ;
Lai, Chin-Diew .
JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) :954-963
[9]  
Joe H., 1997, MONOGRAPHS STAT PROB, DOI DOI 10.1201/B13150
[10]   On first-order integer-valued autoregressive process with Katz family innovations [J].
Kim, Hanwool ;
Lee, Sangyeol .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) :546-562