REDUCED ORDER MODELLING IN A MEMS ARCH RESONATOR EXHIBITING 1:2 INTERNAL RESONANCE

被引:2
作者
Zega, Valentina [1 ]
Gobat, Giorgio [1 ]
Fedeli, Patrick [2 ]
Carulli, Paola [2 ]
Frangi, Attilio A. [1 ]
机构
[1] Politecn Milan, Dept Civil & Environm Engn, Milan, Italy
[2] STMicroelectronics, Cinisello Balsamo, Italy
来源
2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS) | 2022年
关键词
MEMS; 1:2 internal resonance; numerical modelling; resonators;
D O I
10.1109/MEMS51670.2022.9699440
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Model Order Reduction (MOR) technique based on the Implicit Condensation (IC) method has been recently proposed as a powerful tool able to predict a priori, i.e. without the need of experimental calibration of parameters, and in real-time, i.e. by solving one or two degrees-of-freedom system of equations, the nonlinear behavior of resonant Micro-Electro-Mechanical Systems (MEMS). In this work, the MOR technique is employed to predict the complex nonlinear dynamic response of a MEMS arch resonator exhibiting 1:2 internal resonance. Experiments match very well numerical predictions, thus proving great potential of the proposed approach for the simulation of highly nonlinear MEMS devices.
引用
收藏
页码:499 / 502
页数:4
相关论文
共 19 条
  • [1] Bi Q, 2000, J SOUND VIB, V233, P557, DOI 10.1006/jsvi.1999.2813
  • [2] Near Vacuum Gas Damping in MEMS: Simplified Modeling
    Fedeli, Patrick
    Frangi, Attilio
    Laghi, Giacomo
    Langfelder, Giacomo
    Gattere, Gabriele
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (03) : 632 - 642
  • [3] Multipole BEM for the evaluation of damping forces on MEMS
    Frangi, A
    di Gioia, A
    [J]. COMPUTATIONAL MECHANICS, 2005, 37 (01) : 24 - 31
  • [4] Reduced order modelling of the non-linear stiffness in MEMS resonators
    Frangi, Attilio
    Gobat, Giorgio
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 211 - 218
  • [5] Gobat G., 2021, SCI REP-UK, V11, P1
  • [6] Gobat G., 2022, MECH SYST SIGNAL PR, V171, DOI DOI 10.1016/J.YMSSP.2022.108864
  • [7] Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS
    Gobat, Giorgio
    Guillot, Louis
    Frangi, Attilio
    Cochelin, Bruno
    Touze, Cyril
    [J]. MECCANICA, 2021, 56 (08) : 1937 - 1969
  • [8] A Taylor series-based continuation method for solutions of dynamical systems
    Guillot, Louis
    Cochelin, Bruno
    Vergez, Christophe
    [J]. NONLINEAR DYNAMICS, 2019, 98 (04) : 2827 - 2845
  • [9] Two-to-one internal resonance of MEMS arch resonators
    Hajjaj, A. Z.
    Alfosail, F. K.
    Younis, M. I.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 107 : 64 - 72
  • [10] Multiple internal resonances in MEMS arch resonators
    Hajjaj, A. Z.
    Jaber, N.
    Hafiz, M. A. A.
    Ilyas, S.
    Younis, M., I
    [J]. PHYSICS LETTERS A, 2018, 382 (47) : 3393 - 3398