Complexity of quantum motion and quantum-classical correspondence: A phase-space approach

被引:18
作者
Wang, Jiaozi [1 ]
Benenti, Giuliano [2 ,3 ,4 ]
Casati, Giulio [2 ,5 ]
Wang, Wen-ge [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[2] Univ Insubria, Ctr Nonlinear & Complex Syst, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[4] CNR, Ist Nanosci, NEST, I-56126 Pisa, Italy
[5] Univ Fed Rio Grande do Norte, Int Inst Phys, Campus Univ Lagoa Nova,CP 1613, BR-59078970 Natal, RN, Brazil
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
关键词
TIME EVOLUTION; OPERATORS; CHAOS;
D O I
10.1103/PhysRevResearch.2.043178
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the connection between the out-of-time-ordered correlator and the number of harmonics of the phase-space Wigner distribution function. In particular, we show that both quantities grow exponentially for chaotic dynamics, with a rate determined by the largest Lyapunov exponent of the underlying classical dynamics, and algebraically-linearly or quadratically-for integrable dynamics. It is then possible to use such quantities to detect in the time domain the integrability-to-chaos crossover in many-body quantum systems.
引用
收藏
页数:6
相关论文
共 56 条
[2]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[3]   Phase-space characterization of complexity in quantum many-body dynamics [J].
Balachandran, Vinitha ;
Benenti, Giuliano ;
Casati, Giulio ;
Gong, Jiangbin .
PHYSICAL REVIEW E, 2010, 82 (04)
[5]  
Benenti G., 2019, COMPREHENSIVE TXB
[6]   Wigner separability entropy and complexity of quantum dynamics [J].
Benenti, Giuliano ;
Carlo, Gabriel G. ;
Prosen, Tomaz .
PHYSICAL REVIEW E, 2012, 85 (05)
[7]   How complex is quantum motion? [J].
Benenti, Giuliano ;
Casati, Giulio .
PHYSICAL REVIEW E, 2009, 79 (02)
[8]   Out-of-time ordered correlators, complexity, and entropy in bipartite systems [J].
Bergamasco, Pablo D. ;
Carlo, Gabriel G. ;
Rivas, Alejandro M. F. .
PHYSICAL REVIEW RESEARCH, 2019, 1 (03)
[9]   CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS [J].
BERMAN, GP ;
ZASLAVSKY, GM .
PHYSICA A, 1978, 91 (3-4) :450-460
[10]   Timescales in the quench dynamics of many-body quantum systems: Participation ratio versus out-of-time ordered correlator [J].
Borgonovi, Fausto ;
Izrailev, Felix M. ;
Santos, Lea F. .
PHYSICAL REVIEW E, 2019, 99 (05)