Learning Deep Analysis Dictionaries for Image Super-Resolution

被引:10
|
作者
Huang, Jun-Jie [1 ]
Dragotti, Pier Luigi [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
Dictionary Learning; Analysis Dictionary; Deep Neural Networks; Deep Model; SPARSE ANALYSIS MODEL; THRESHOLDING ALGORITHM; SHRINKAGE;
D O I
10.1109/TSP.2020.3036902
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Inspired by the recent success of deep neural networks and the recent efforts to develop multi-layer dictionary models, we propose a Deep Analysis dictionary Model (DeepAM) which is optimized to address a specific regression task known as single image super-resolution. Contrary to other multi-layer dictionary models, our architecture contains L layers of analysis dictionary and soft-thresholding operators to gradually extract high-level features and a layer of synthesis dictionary which is designed to optimize the regression task at hand. In our approach, each analysis dictionary is partitioned into two sub-dictionaries: an Information Preserving Analysis Dictionary (IPAD) and a Clustering Analysis Dictionary (CAD). The IPAD together with the corresponding soft-thresholds is designed to pass the key information from the previous layer to the next layer, while the CAD together with the corresponding soft-thresholding operator is designed to produce a sparse feature representation of its input data that facilitates discrimination of key features. DeepAM uses both supervised and unsupervised setup. Simulation results show that the proposed deep analysis dictionary model achieves better performance compared to a deep neural network that has the same structure and is optimized using back-propagation when training datasets are small. Onnoisy image super-resolution, DeepAM can be well adapted to unseen testing noise levels by rescaling the IPAD and CAD thresholds of the first layer.
引用
收藏
页码:6633 / 6648
页数:16
相关论文
共 50 条
  • [31] Deep Image and Kernel Prior Learning for Blind Super-Resolution
    Yamawaki, Kazuhiro
    Han, Xian-Hua
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA, MMASIA 2022, 2022,
  • [32] Exploring Deep Learning Image Super-Resolution for Iris Recognition
    Ribeiro, Eduardo
    Uhl, Andreas
    Alonso-Fernandez, Fernando
    Farrugia, Reuben A.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2176 - 2180
  • [33] DEEP LEARNING BASED IMAGE SUPER-RESOLUTION WITH COUPLED BACKPROPAGATION
    Guo, Tiantong
    Mousavi, Hojjai S.
    Monga, Vishal
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 237 - 241
  • [34] Image super-resolution algorithm based on deep learning network
    Chen, Jian
    Wang, Xiang
    Li, Qinrui
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 180 - 181
  • [35] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [36] Learning Deep Resonant Prior for Hyperspectral Image Super-Resolution
    Gong, Zhaori
    Wang, Nannan
    Cheng, De
    Jiang, Xinrui
    Xin, Jingwei
    Yang, Xi
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Deep Learning for Simultaneous Seismic Image Super-Resolution and Denoising
    Li, Jintao
    Wu, Xinming
    Hu, Zhanxuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] A Review of Single Image Super-resolution Based on Deep Learning
    Zhang N.
    Wang Y.-C.
    Zhang X.
    Xu D.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2479 - 2499
  • [39] Remote Sensing Image Super-Resolution using Deep Learning
    Rajeshwari, P.
    Priya, Pamujula Lakshmi
    Pooja, M.
    Abhishek, G.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 665 - 668
  • [40] Image Super-Resolution with Deep Dictionary
    Maeda, Shunta
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 464 - 480