Learning Deep Analysis Dictionaries for Image Super-Resolution

被引:10
|
作者
Huang, Jun-Jie [1 ]
Dragotti, Pier Luigi [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
Dictionary Learning; Analysis Dictionary; Deep Neural Networks; Deep Model; SPARSE ANALYSIS MODEL; THRESHOLDING ALGORITHM; SHRINKAGE;
D O I
10.1109/TSP.2020.3036902
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Inspired by the recent success of deep neural networks and the recent efforts to develop multi-layer dictionary models, we propose a Deep Analysis dictionary Model (DeepAM) which is optimized to address a specific regression task known as single image super-resolution. Contrary to other multi-layer dictionary models, our architecture contains L layers of analysis dictionary and soft-thresholding operators to gradually extract high-level features and a layer of synthesis dictionary which is designed to optimize the regression task at hand. In our approach, each analysis dictionary is partitioned into two sub-dictionaries: an Information Preserving Analysis Dictionary (IPAD) and a Clustering Analysis Dictionary (CAD). The IPAD together with the corresponding soft-thresholds is designed to pass the key information from the previous layer to the next layer, while the CAD together with the corresponding soft-thresholding operator is designed to produce a sparse feature representation of its input data that facilitates discrimination of key features. DeepAM uses both supervised and unsupervised setup. Simulation results show that the proposed deep analysis dictionary model achieves better performance compared to a deep neural network that has the same structure and is optimized using back-propagation when training datasets are small. Onnoisy image super-resolution, DeepAM can be well adapted to unseen testing noise levels by rescaling the IPAD and CAD thresholds of the first layer.
引用
收藏
页码:6633 / 6648
页数:16
相关论文
共 50 条
  • [21] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [22] Image super-resolution reconstruction based on deep dictionary learning and A
    Huang, Yi
    Bian, Weixin
    Jie, Biao
    Zhu, Zhiqiang
    Li, Wenhu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2629 - 2641
  • [23] Recent Advances in Deep Learning for Single Image Super-Resolution
    Zhang, Yungang
    Xiang, Yu
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 85 - 95
  • [24] Deep Learning Based Approach Implemented to Image Super-Resolution
    Thuong Le-Tien
    Tuan Nguyen-Thanh
    Hanh-Phan Xuan
    Giang Nguyen-Truong
    Vinh Ta-Quoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (04) : 209 - 216
  • [25] A brief survey on deep learning based image super-resolution
    Zhu X.
    Li S.
    Wang L.
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [26] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [27] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [28] Deep Dual Internal Learning for Hyperspectral Image Super-Resolution
    Sun, Yongqing
    Liu, Hong
    Chang, Qiong
    Han, Xianhua
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 263 - 276
  • [29] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, (04) : 413 - 426
  • [30] Chip Image Super-Resolution Reconstruction Based on Deep Learning
    Fan M.
    Chi Y.
    Zhang M.
    Li Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 353 - 360