Learning Deep Analysis Dictionaries for Image Super-Resolution

被引:10
|
作者
Huang, Jun-Jie [1 ]
Dragotti, Pier Luigi [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
Dictionary Learning; Analysis Dictionary; Deep Neural Networks; Deep Model; SPARSE ANALYSIS MODEL; THRESHOLDING ALGORITHM; SHRINKAGE;
D O I
10.1109/TSP.2020.3036902
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Inspired by the recent success of deep neural networks and the recent efforts to develop multi-layer dictionary models, we propose a Deep Analysis dictionary Model (DeepAM) which is optimized to address a specific regression task known as single image super-resolution. Contrary to other multi-layer dictionary models, our architecture contains L layers of analysis dictionary and soft-thresholding operators to gradually extract high-level features and a layer of synthesis dictionary which is designed to optimize the regression task at hand. In our approach, each analysis dictionary is partitioned into two sub-dictionaries: an Information Preserving Analysis Dictionary (IPAD) and a Clustering Analysis Dictionary (CAD). The IPAD together with the corresponding soft-thresholds is designed to pass the key information from the previous layer to the next layer, while the CAD together with the corresponding soft-thresholding operator is designed to produce a sparse feature representation of its input data that facilitates discrimination of key features. DeepAM uses both supervised and unsupervised setup. Simulation results show that the proposed deep analysis dictionary model achieves better performance compared to a deep neural network that has the same structure and is optimized using back-propagation when training datasets are small. Onnoisy image super-resolution, DeepAM can be well adapted to unseen testing noise levels by rescaling the IPAD and CAD thresholds of the first layer.
引用
收藏
页码:6633 / 6648
页数:16
相关论文
共 50 条
  • [1] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [2] Deep Learning for Image Super-Resolution: A Survey
    Wang, Zhihao
    Chen, Jian
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3365 - 3387
  • [3] Advanced deep learning for image super-resolution
    Shamsolmoali, Pourya
    Sadka, Abdul Hamid
    Zhou, Huiyu
    Yang, Wankou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 82
  • [4] Learning local dictionaries and similarity structures for single image super-resolution
    Zhang, Kaibing
    Li, Jie
    Wang, Haijun
    Liu, Xiuping
    Gao, Xinbo
    SIGNAL PROCESSING, 2018, 142 : 231 - 243
  • [5] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [6] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [7] Deep Learning for Image/Video Restoration and Super-resolution
    Tekalp, A. Murat
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2022, 13 (01): : 1 - 110
  • [8] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [9] Deep Bilateral Learning for Stereo Image Super-Resolution
    Xu, Qingyu
    Wang, Longguang
    Wang, Yingqian
    Sheng, Weidong
    Deng, Xinpu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 613 - 617
  • [10] Deep Learning based Frameworks for Image Super-Resolution and Noise-Resilient Super-Resolution
    Sharma, Manoj
    Chaudhury, Santanu
    Lall, Brejesh
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 744 - 751