The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature

被引:55
作者
Chen, Hongyang [1 ]
Zhu, Ting [1 ]
Li, Bo [1 ]
Fang, Changming [1 ]
Nie, Ming [1 ]
机构
[1] Fudan Univ, Key Lab Biodivers Sci & Ecol Engn, Coastal Ecosyst Res Stn Yangtze River Estuary, Minist Educ,Inst Biodivers Sci,Sch Life Sci, 2005 Songhu Rd, Shanghai 200438, Peoples R China
基金
美国国家科学基金会;
关键词
COENZYME M REDUCTASE; METHANE PRODUCTION; RESPIRATION; COMMUNITY; ACCLIMATION; SENSITIVITY; FEEDBACKS; BACTERIAL; QUANTIFICATION; DECOMPOSITION;
D O I
10.1038/s41467-020-19549-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial methanogenesis in anaerobic soils contributes greatly to global methane (CH4) release, and understanding its response to temperature is fundamental to predicting the feedback between this potent greenhouse gas and climate change. A compensatory thermal response in microbial activity over time can reduce the response of respiratory carbon (C) release to temperature change, as shown for carbon dioxide (CO2) in aerobic soils. However, whether microbial methanogenesis also shows a compensatory response to temperature change remains unknown. Here, we used anaerobic wetland soils from the Greater Khingan Range and the Tibetan Plateau to investigate how 160 days of experimental warming (+4 degrees C) and cooling (-4 degrees C) affect the thermal response of microbial CH4 respiration and whether these responses correspond to changes in microbial community dynamics. The mass-specific CH4 respiration rates of methanogens decreased with warming and increased with cooling, suggesting that microbial methanogenesis exhibited compensatory responses to temperature changes. Furthermore, changes in the species composition of methanogenic community under warming and cooling largely explained the compensatory response in the soils. The stimulatory effect of climate warming on soil microbe-driven CH4 emissions may thus be smaller than that currently predicted, with important consequences for atmospheric CH4 concentrations. Soil microbes produce more methane as temperatures warm, but it is unclear if they acclimate to heat, or keep producing more of the greenhouse gas. Here the authors use artificial wetland warming experiments to show that after initial spikes in methane emissions after warming, emissions level out over time.
引用
收藏
页数:7
相关论文
共 65 条
[1]   Resistance, resilience, and redundancy in microbial communities [J].
Allison, Steven D. ;
Martiny, Jennifer B. H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 :11512-11519
[2]   Soil-carbon response to warming dependent on microbial physiology [J].
Allison, Steven D. ;
Wallenstein, Matthew D. ;
Bradford, Mark A. .
NATURE GEOSCIENCE, 2010, 3 (05) :336-340
[3]  
Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1
[4]  
[Anonymous], 2002, Biochemical Adaptation: Mechanism and Process in Physiological Evolution
[5]   Thermal acclimation and the dynamic response of plant respiration to temperature [J].
Atkin, OK ;
Tjoelker, MG .
TRENDS IN PLANT SCIENCE, 2003, 8 (07) :343-351
[6]   The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature [J].
Auffret, Marc D. ;
Karhu, Kristiina ;
Khachane, Amit ;
Dungait, Jennifer A. J. ;
Fraser, Fiona ;
Hopkins, David W. ;
Wookey, Philip A. ;
Singh, Brajesh K. ;
Freitag, Thomas E. ;
Hartley, Iain P. ;
Prosser, James I. .
PLOS ONE, 2016, 11 (10)
[7]   Carbon cycling in peatlands - A review of processes and controls [J].
Blodau, Christian .
Environmental Reviews, 2002, 10 (02) :111-134
[8]   Thermal adaptation of soil microbial respiration to elevated temperature [J].
Bradford, Mark A. ;
Davies, Christian A. ;
Frey, Serita D. ;
Maddox, Thomas R. ;
Melillo, Jerry M. ;
Mohan, Jacqueline E. ;
Reynolds, James F. ;
Treseder, Kathleen K. ;
Wallenstein, Matthew D. .
ECOLOGY LETTERS, 2008, 11 (12) :1316-1327
[9]   Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation [J].
Bradford, Mark A. ;
McCulley, Rebecca L. ;
Crowther, Thomas W. ;
Oldfield, Emily E. ;
Wood, Stephen A. ;
Fierer, Noah .
NATURE ECOLOGY & EVOLUTION, 2019, 3 (02) :223-+
[10]  
Bradford MA, 2016, NAT CLIM CHANGE, V6, P751, DOI [10.1038/NCLIMATE3071, 10.1038/nclimate3071]