High-Field Detection of Biomarkers with Fast Field-Cycling MRI: The Example of Zinc Sensing

被引:9
作者
Boedenler, Markus [1 ]
Malikidogo, Kyangwi P. [2 ]
Morfin, Jean-Francois [2 ]
Aigner, Christoph Stefan [1 ]
Toth, Eva [2 ]
Bonnet, Celia S. [2 ]
Scharfetter, Hermann [1 ]
机构
[1] Graz Univ Technol, Inst Med Engn, Graz, Austria
[2] CNRS, Ctr Biophys Mol, Rue Charles Sadron, F-45071 Orleans 2, France
关键词
contrast agents; fast field-cycling; high-field detection; magnetic resonance imaging; molecular imaging; MAGNETIC-RESONANCE; CONTRAST AGENTS; COMPLEXES; PROBES; COORDINATION; DESIGN; IONS;
D O I
10.1002/chem.201901157
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many smart magnetic resonance imaging (MRI) probes provide response to a biomarker based on modulation of their rotational correlation time. The magnitude of such MRI signal changes is highly dependent on the magnetic field and the response decreases dramatically at high fields (>2 T). To overcome the loss of efficiency of responsive probes at high field, with fast-field cycling magnetic resonance imaging (FFC-MRI) we exploit field-dependent information rather than the absolute difference in the relaxation rate measured in the absence and in the presence of the biomarker at a given imaging field. We report here the application of fast field-cycling techniques combined with the use of a molecular probe for the detection of Zn2+ to achieve 166 % MRI signal enhancement at 3 T, whereas the same agent provides no detectable response using conventional MRI. This approach can be generalized to any biomarker provided the detection is based on variation of the rotational motion of the probe.
引用
收藏
页码:8236 / 8239
页数:4
相关论文
共 32 条
[1]   Gd(III) complexes as contrast agents for magnetic resonance imaging: A proton relaxation enhancement study of the interaction with human serum albumin [J].
Aime, S ;
Botta, M ;
Fasano, M ;
Crich, SG ;
Terreno, E .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 1996, 1 (04) :312-319
[2]   Characterisation of magnetic resonance imaging (MRI) contrast agents using NMR relaxometry [J].
Aime, Silvio ;
Botta, Mauro ;
Esteban-Gomez, David ;
Platas-Iglesias, Carlos .
MOLECULAR PHYSICS, 2019, 117 (7-8) :898-909
[3]  
Alford J. K., 2011, P INT SOC MAG RESON, V19, P318
[4]  
Alford J.K., 2011, Proc. Intl. Soc. Magn. Reson. Med, V19, P452
[5]   Delta Relaxation Enhanced MR: Improving Activation-Specificity of Molecular Probes through R1 Dispersion Imaging [J].
Alford, Jamu K. ;
Rutt, Brian K. ;
Scholl, Timothy J. ;
Handler, William B. ;
Chronik, Blaine A. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (04) :796-802
[6]   Nuclear magnetic relaxation dispersion of murine tissue for development of T1 (R1) dispersion contrast imaging [J].
Araya, Yonathan T. ;
Martinez-Santiesteban, Francisco ;
Handler, William B. ;
Harris, Chad T. ;
Chronik, Blaine A. ;
Scholl, Timothy J. .
NMR IN BIOMEDICINE, 2017, 30 (12)
[7]   Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives [J].
Boedenler, Markus ;
de Rochefort, Ludovic ;
Ross, P. James ;
Chanet, Nicolas ;
Guillot, Genevieve ;
Davies, Gareth R. ;
Goesweiner, Christian ;
Scharfetter, Hermann ;
Lurie, David J. ;
Broche, Lionel M. .
MOLECULAR PHYSICS, 2019, 117 (7-8) :832-848
[8]   R1 dispersion contrast at high field with fast field-cycling MRI [J].
Boedenler, Markus ;
Basini, Martina ;
Casula, Maria Francesca ;
Umut, Evrim ;
Goesweiner, Christian ;
Petrovic, Andreas ;
Kruk, Danuta ;
Scharfetter, Hermann .
JOURNAL OF MAGNETIC RESONANCE, 2018, 290 :68-75
[9]   Zn2+ detection by MRI using Ln3+-based complexes: The central role of coordination chemistry [J].
Bonnet, Celia S. .
COORDINATION CHEMISTRY REVIEWS, 2018, 369 :91-104
[10]   Molecular Magnetic Resonance Imaging Probes Based on Ln3+ Complexes [J].
Bonnet, Celia S. ;
Toth, Eva .
ADVANCES IN INORGANIC CHEMISTRY, VOL 68: INSIGHTS FROM IMAGING IN BIOINORGANIC CHEMISTRY, 2016, 68 :43-96