Fenestrated microneedles for ocular drug delivery

被引:58
作者
Khandan, Omid [1 ]
Kahook, Malik Y. [2 ]
Rao, Masaru P. [1 ,3 ,4 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Univ Colorado, Sch Med, Dept Ophthalmol, Aurora, CO USA
[3] Univ Calif Riverside, Dept Bioengn, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA
关键词
Microneedles; Ocular drug delivery; Titanium micromachining; INTRAVITREAL INJECTION; COATED MICRONEEDLES; INSERTION; COMPLICATIONS; TITANIUM;
D O I
10.1016/j.snb.2015.09.071
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of a safe, simple, and efficacious means for ocular drug delivery remains a critical unmet need. Solid microneedles (MNs) show significant promise in this regard. However, the limited drug carrying capacity of devices demonstrated to date may limit potential for clinical translation, due to the prohibitively large array sizes that may be required for delivery of therapeutically relevant dosages. In this study, titanium deep reactive ion etching (Ti DRIE) is used to address this limitation via fabrication of MNs with complex through-thickness fenestrations (i.e., windows), which serve as reservoirs for passive delivery. Using finite element analyses, mechanical testing, and ex vivo rabbit cornea preparations, we show that these devices possess sufficient stiffness for reliable insertion. Furthermore, using spectrophotometry and fluorescence microscopy, we show that these devices can increase carrying capacity up to five-fold relative to solid MNs of comparable size, as well as enhance sub-surface deposition in ex vivo rabbit cornea. Collectively, these results begin to demonstrate the potential embodied in fenestrated Ti MNs for eventual realization of ocular drug delivery devices with more clinically relevant form factors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 39 条
[1]   High-aspect-ratio bulk micromachining of titanium [J].
Aimi, MF ;
Rao, MP ;
Macdonald, NC ;
Zuruzi, AS ;
Bothman, DP .
NATURE MATERIALS, 2004, 3 (02) :103-105
[2]   A high-yield microassembly structure for three-dimensional microelectrode arrays [J].
Bai, Q ;
Wise, KD ;
Anderson, DJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (03) :281-289
[3]   In vivo performance of a drug-eluting contact lens to treat glaucoma for a month [J].
Ciolino, Joseph B. ;
Stefanescu, Cristina F. ;
Ross, Amy E. ;
Salvador-Culla, Borja ;
Cortez, Priscila ;
Ford, Eden M. ;
Wymbs, Kate A. ;
Sprague, Sarah L. ;
Mascoop, Daniel R. ;
Rudina, Shireen S. ;
Trauger, Sunia A. ;
Cade, Fabiano ;
Kohane, Daniel S. .
BIOMATERIALS, 2014, 35 (01) :432-439
[4]   A Drug-Eluting Contact Lens [J].
Ciolino, Joseph B. ;
Hoare, Todd R. ;
Iwata, Naomi G. ;
Behlau, Irmgard ;
Dohlman, Claes H. ;
Langer, Robert ;
Kohane, Daniel S. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2009, 50 (07) :3346-3352
[5]   Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force [J].
Davis, SP ;
Landis, BJ ;
Adams, ZH ;
Allen, MG ;
Prausnitz, MR .
JOURNAL OF BIOMECHANICS, 2004, 37 (08) :1155-1163
[6]   Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature [J].
Falavarjani, K. Ghasemi ;
Nguyen, Q. D. .
EYE, 2013, 27 (07) :787-794
[7]   Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers [J].
Gan, Li ;
Wang, Jing ;
Jiang, Min ;
Bartlett, Hanah ;
Ouyang, Defang ;
Eperjesi, Frank ;
Liu, Jianping ;
Gan, Yong .
DRUG DISCOVERY TODAY, 2013, 18 (5-6) :290-297
[8]   Recent Perspectives in Ocular Drug Delivery [J].
Gaudana, Ripal ;
Jwala, J. ;
Boddu, Sai H. S. ;
Mitra, Ashim K. .
PHARMACEUTICAL RESEARCH, 2009, 26 (05) :1197-1216
[9]   An implantable MEMS micropump system for drug delivery in small animals [J].
Gensler, Heidi ;
Sheybani, Roya ;
Li, Po-Ying ;
Lo Mann, Ronalee ;
Meng, Ellis .
BIOMEDICAL MICRODEVICES, 2012, 14 (03) :483-496
[10]  
Gerhard W., 1994, MAT PROPERTIES HDB T