The extremal secant conjecture for curves of arbitrary gonality

被引:2
|
作者
Kemeny, Michael [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
关键词
syzygies; curves; gonality; secant conjecture; SYZYGY CONJECTURE; CANONICAL CURVES; ALGEBRAIC CURVE; LINEAR SERIES; DIVISORS; GENUS;
D O I
10.1112/S0010437X16008198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Green- Lazarsfeld secant conjecture [Green and Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), 73- 90; Conjecture (3.4)] for extremal line bundles on curves of arbitrary gonality, subject to explicit genericity assumptions.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 50 条
  • [21] Characterizing gonality for two-component stable curves
    Coelho, Juliana
    Sercio, Frederico
    GEOMETRIAE DEDICATA, 2021, 214 (01) : 157 - 176
  • [22] Brill-Noether theory for curves of a fixed gonality
    Jensen, David
    Ranganathan, Dhruv
    FORUM OF MATHEMATICS PI, 2021, 9
  • [23] Gonality of curves with a singular model on an elliptic quadric surface
    Ballico, Edoardo
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (03) : 394 - 400
  • [24] Characterizing gonality for two-component stable curves
    Juliana Coelho
    Frederico Sercio
    Geometriae Dedicata, 2021, 214 : 157 - 176
  • [25] Smooth curves specialize to extremal curves
    Hartshorne, Robin
    Lella, Paolo
    Schlesinger, Enrico
    MATHEMATISCHE ANNALEN, 2015, 361 (1-2) : 459 - 476
  • [26] Secant planes of projective curves embedded by nonspecial line bundles
    Kim, Seonja
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (08) : 3475 - 3485
  • [27] Gonality of dynatomic curves and strong uniform boundedness of preperiodic points
    Doyle, John R.
    Poonen, Bjorn
    COMPOSITIO MATHEMATICA, 2020, 156 (04) : 733 - 743
  • [28] Codimension 1 subvarieties of Mg and real gonality of real curves
    Ballico, E
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (04) : 917 - 924
  • [29] On gonality, scrolls, and canonical models of non-Gorenstein curves
    Martins, Renato Vidal
    Lara, Danielle
    Souza, Jairo Menezes
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 111 - 133
  • [30] A remark on the Brill-Noether theory of curves of fixed gonality
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2025, 124 (01) : 49 - 61