random censored data;
maximum likelihood;
Bayesian methods;
gamma prior distribution;
Weibull distribution;
D O I:
10.2306/scienceasia1513-1874.2014.40.257
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Random or non-informative censoring is when each subject has a censoring time that is statistically independent of their failure times. The classical approach is considered for estimating the Weibull distribution parameters with non-informative censored samples which occur most often in medical and biological study. We have also considered the Bayesian methods via gamma priors with asymmetric (general entropy) loss function and symmetric (squared error) loss function. A simulation study is carried out to assess the performances of the methods using mean squared errors and absolute biases. Two sets of data have been analysed for the purpose of illustration.
机构:
Fred Hutchinson Canc Res Ctr, Program Biostat, Div Publ Hlth Sci, Seattle, WA 98109 USAFred Hutchinson Canc Res Ctr, Program Biostat, Div Publ Hlth Sci, Seattle, WA 98109 USA
Chen, Ying Qing
Hu, Chengcheng
论文数: 0引用数: 0
h-index: 0
机构:Fred Hutchinson Canc Res Ctr, Program Biostat, Div Publ Hlth Sci, Seattle, WA 98109 USA
Hu, Chengcheng
Wang, Yan
论文数: 0引用数: 0
h-index: 0
机构:Fred Hutchinson Canc Res Ctr, Program Biostat, Div Publ Hlth Sci, Seattle, WA 98109 USA
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Li, Gang
Lu, Xuyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA