Parametric inference of non-informative censored time-to-event data

被引:0
|
作者
Guure, Chris Bambey [1 ]
Ibrahim, Noor Alum [2 ]
Bosomprah, Samuel [1 ]
机构
[1] Univ Ghana, Sch Publ Hlth, Dept Biostat, Legon, Accra, Ghana
[2] Univ Putra Malaysia, Fac Sci, Dept Math, Salangor, Malaysia
来源
SCIENCEASIA | 2014年 / 40卷 / 03期
关键词
random censored data; maximum likelihood; Bayesian methods; gamma prior distribution; Weibull distribution;
D O I
10.2306/scienceasia1513-1874.2014.40.257
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Random or non-informative censoring is when each subject has a censoring time that is statistically independent of their failure times. The classical approach is considered for estimating the Weibull distribution parameters with non-informative censored samples which occur most often in medical and biological study. We have also considered the Bayesian methods via gamma priors with asymmetric (general entropy) loss function and symmetric (squared error) loss function. A simulation study is carried out to assess the performances of the methods using mean squared errors and absolute biases. Two sets of data have been analysed for the purpose of illustration.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [41] τ-Inflated Beta Regression Model for Estimating τ-Restricted Means and Event-Free Probabilities for Censored Time-to-Event Data
    Wang, Yizhuo
    Murray, Susan
    BIOMETRICAL JOURNAL, 2024, 66 (08)
  • [42] Sensitivity to censored-at-random assumption in the analysis of time-to-event endpoints
    Lipkovich, Ilya
    Ratitch, Bohdana
    O'Kelly, Michael
    PHARMACEUTICAL STATISTICS, 2016, 15 (03) : 216 - 229
  • [43] Attributable risk function in the proportional hazards model for censored time-to-event
    Chen, Ying Qing
    Hu, Chengcheng
    Wang, Yan
    BIOSTATISTICS, 2006, 7 (04) : 515 - 529
  • [44] NON-PARAMETRIC REGRESSION WITH CENSORED SURVIVAL-TIME DATA
    DABROWSKA, DM
    SCANDINAVIAN JOURNAL OF STATISTICS, 1987, 14 (03) : 181 - 197
  • [45] Exploiting Censored Information in Self-Training for Time-to-Event Prediction
    Haredasht, Fateme Nateghi
    Dauda, Kazeem Adesina
    Vens, Celine
    IEEE ACCESS, 2023, 11 : 96831 - 96840
  • [46] Analysis of time-to-event data with incomplete event adjudication
    Cook, TD
    Kosorok, MR
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1140 - 1152
  • [47] A Bayesian approach for instrumental variable analysis with censored time-to-event outcome
    Li, Gang
    Lu, Xuyang
    STATISTICS IN MEDICINE, 2015, 34 (04) : 664 - 684
  • [48] Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference
    Stijven, Florian
    Molenberghs, Geert
    Van Keilegom, Ingrid
    van der Elst, Wim
    Alonso, Ariel
    LIFETIME DATA ANALYSIS, 2025, 31 (01) : 1 - 23
  • [49] Comparison of imputation methods for interval censored time-to-event data in joint modelling of tree growth and mortality
    Lee, Terry C. K.
    Zeng, Leilei
    Thompson, Darby J. S.
    Dean, C. B.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (03): : 438 - 457
  • [50] Bayesian comparison of diagnostic tests with largely non-informative missing data
    Paulino, Carlos Daniel
    Silva, Giovani L.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (10) : 1877 - 1886