Parametric inference of non-informative censored time-to-event data

被引:0
|
作者
Guure, Chris Bambey [1 ]
Ibrahim, Noor Alum [2 ]
Bosomprah, Samuel [1 ]
机构
[1] Univ Ghana, Sch Publ Hlth, Dept Biostat, Legon, Accra, Ghana
[2] Univ Putra Malaysia, Fac Sci, Dept Math, Salangor, Malaysia
来源
SCIENCEASIA | 2014年 / 40卷 / 03期
关键词
random censored data; maximum likelihood; Bayesian methods; gamma prior distribution; Weibull distribution;
D O I
10.2306/scienceasia1513-1874.2014.40.257
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Random or non-informative censoring is when each subject has a censoring time that is statistically independent of their failure times. The classical approach is considered for estimating the Weibull distribution parameters with non-informative censored samples which occur most often in medical and biological study. We have also considered the Bayesian methods via gamma priors with asymmetric (general entropy) loss function and symmetric (squared error) loss function. A simulation study is carried out to assess the performances of the methods using mean squared errors and absolute biases. Two sets of data have been analysed for the purpose of illustration.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [31] ESTIMATING EVENT-SPECIFIC PROBABILITIES AND CONDITIONAL TIME-TO-EVENT DISTRIBUTIONS FROM CENSORED COMPETING RISKS DATA
    Degeling, K.
    Franchini, F.
    IJzerman, M.
    Fedyashov, V
    VALUE IN HEALTH, 2022, 25 (07) : S527 - S527
  • [32] Network estimation for censored time-to-event data for multiple events based on multivariate survival analysis
    Kim, Yoojoong
    Seok, Junhee
    PLOS ONE, 2020, 15 (10):
  • [33] Approximating the Baseline Hazard Function by Taylor Series for Interval-Censored Time-to-Event Data
    Chen, Ding-Geng
    Yu, Lili
    Peace, Karl E.
    Lio, Y. L.
    Wang, Yibin
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (03) : 695 - 708
  • [34] A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data
    Wolfson, Julian
    Bandyopadhyay, Sunayan
    Elidrisi, Mohamed
    Vazquez-Benitez, Gabriela
    Vock, David M.
    Musgrove, Donald
    Adomavicius, Gediminas
    Johnson, Paul E.
    O'Connor, Patrick J.
    STATISTICS IN MEDICINE, 2015, 34 (21) : 2941 - 2957
  • [35] How to analyse seed germination data using statistical time-to-event analysis: non-parametric and semi-parametric methods
    McNair, James N.
    Sunkara, Anusha
    Frobish, Daniel
    SEED SCIENCE RESEARCH, 2012, 22 (02) : 77 - 95
  • [36] A parametric additive hazard model for time-to-event analysis
    Dina Voeltz
    Annika Hoyer
    Amelie Forkel
    Anke Schwandt
    Oliver Kuß
    BMC Medical Research Methodology, 24
  • [37] A parametric additive hazard model for time-to-event analysis
    Voeltz, Dina
    Hoyer, Annika
    Forkel, Amelie
    Schwandt, Anke
    Kuss, Oliver
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [38] Time-to-event analyses of ecotoxicity data
    Newman, MC
    McCloskey, JT
    ECOTOXICOLOGY, 1996, 5 (03) : 187 - 196
  • [39] Modeling Discrete Time-to-Event Data
    Beyersmann, Jan
    BIOMETRICS, 2018, 74 (01) : 378 - 379
  • [40] Modeling Discrete Time-to-Event Data
    Bringe, Arnaud
    POPULATION, 2018, 73 (02): : 406 - 407