Shock waves in reactive hydrodynamics

被引:3
作者
Arora, Rajan [1 ]
Tomar, Amit [1 ]
Singh, V. P. [1 ]
机构
[1] Indian Inst Technol Roorkee, DPT, Saharanpur 247001, UP, India
关键词
Reactive hydrodynamic medium; Weakly non-linear geometrical acoustics solutions; Planar and non-planar shock waves; Resonance; NONLINEAR HYPERBOLIC WAVES; SIMILARITY SOLUTIONS; GAS;
D O I
10.1007/s00193-009-0192-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using the weakly non-linear geometrical acoustics theory, we obtain the small amplitude high frequency asymptotic solution to the basic equations in Eulerian coordinates governing one dimensional unsteady planar, spherically and cylindrically symmetric flow in a reactive hydrodynamic medium. We derive the transport equations for the amplitudes of resonantly interacting waves. The evolutionary behavior of non-resonant wave modes culminating into shock waves is also studied.
引用
收藏
页码:145 / 150
页数:6
相关论文
共 27 条
[1]  
Arora R., 2005, Can. Appl. Math. Q, V13, P297
[2]   Convergence of strong shock in a Van der Waals gas [J].
Arora, Rajan ;
Sharma, V. D. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (05) :1825-1837
[3]  
CEHELSKY P, 1986, STUD APPL MATH, V74, P117
[4]  
Chapman D.L., 1899, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, V47, P90, DOI DOI 10.1080/14786449908621243
[5]  
Choquet-Bruhat V, 1969, J MATH PURE APPL, V48, P119
[6]  
Courant R., 1999, Supersonic Flow and Shock Waves
[7]  
Doering W., 1943, Ann. Phys, V43, P421
[8]  
Fickett W., 1979, DETONATION
[9]  
Germain P., 1971, PROGR WAVES, P11
[10]  
He Y, 1995, APPL ANAL, V57, P145