A 250-Mb/s/pin, 1-Gb double-data-rate SDRAM with a bidirectional delay and an interbank shared redundancy scheme

被引:4
作者
Takai, Y [1 ]
Fujita, M
Nagata, K
Isa, S
Nakazawa, S
Hirobe, A
Ohkubo, H
Sakao, M
Horiba, S
Fukase, T
Takaishi, Y
Matsuo, M
Komuro, M
Uchida, T
Sakoh, T
Saino, K
Uchiyama, S
Takada, Y
Sekine, J
Nakanishi, N
Oikawa, T
Igeta, M
Tanabe, H
Miyamoto, H
Hashimoto, T
Yamaguchi, H
Koyama, K
Kobayashi, Y
Okuda, T
机构
[1] NEC Corp Ltd, Kanagawa 2291198, Japan
[2] NEC IC Microcomp Syst Ltd, Kawasaki, Kanagawa 2110063, Japan
关键词
clock; clock generator; clock synchronization; delay circuit; double-data-rate (DDR); DRAM; input buffer; interbank-shared redundancy; low cost; low voltage; LVCMOS; receiver; redundancy; skew; synchronous DRAM; TTL; 1; Gb;
D O I
10.1109/4.823441
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes three circuit technologies indispensable for high-bandwidth multibank DRAM's. 1) A clock generator based on a bidirectional delay (BDD) eliminates the output skew The BDD measures the cycle time as the quantity charged or discharged of an analog quantity, and replicates it in the next cycle. This achieves a 0.18-mm(2), two-cycle-lock clock generator operating from 25 to 167 MHz with a 30-ps resolution. 2) A quad-coupled receiver eliminates the internal skew caused by the difference between a rise input and a fall input by 40%, 3) An interbank shared redundancy scheme (ISR) with a variable unit redundancy (VUR) efficiently increases yield in multibank DRAM's. The ISR allows redundancy match circuits to be shared with two or more banks. The VUR allows the number of units replaced to be variable. These circuit technologies achieved a 250 Mb/s/pin, 8-bank, 1-Gb double-data-rate synchronous DRAM.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 14 条
  • [1] A 1-Gb SDRAM with ground-level precharged bit line and nonboosted 2.1-V word line
    Eto, S
    Matsumiya, H
    Takita, M
    Ishii, Y
    Nakamura, T
    Kawabata, K
    Kano, H
    Kitamoto, A
    Ikeda, T
    Koga, T
    Higashiho, M
    Serizawa, Y
    Itabashi, K
    Tsuboi, O
    Yokoyama, Y
    Taguchi, M
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (11) : 1697 - 1702
  • [2] A FLEXIBLE REDUNDANCY TECHNIQUE FOR HIGH-DENSITY DRAMS
    HORIGUCHI, M
    ETOH, J
    AOKI, M
    ITOH, K
    MATSUMOTO, T
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (01) : 12 - 17
  • [3] JOHNS DA, 1997, ANALOG INTEGR CIRC S, pCH3
  • [4] Fault-tolerant designs for 256 Mb DRAM
    Kirihata, T
    Watanabe, Y
    Wong, H
    DeBrosse, JK
    Yoshida, M
    Kato, D
    Fujii, S
    Wordeman, MR
    Poechmueller, P
    Parke, SA
    Asao, Y
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1996, 31 (04) : 558 - 566
  • [5] A 220-mm2, four- and eight-bank, 256-Mb SDRAM with single-sided stitched WL architecture
    Kirihata, T
    Gall, M
    Hosokawa, K
    Dortu, JM
    Wong, H
    Pfefferl, P
    Ji, BL
    Weinfurtner, O
    DeBrosse, JK
    Terletzki, H
    Selz, M
    Ellis, W
    Wordeman, MR
    Kiehl, O
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (11) : 1711 - 1719
  • [6] Nagata K, 1997, NEC RES DEV, V38, P1
  • [7] NODA H, 1998 S VLSI CIRC, P62
  • [8] Okajima Y, 1996, IEICE T ELECTRON, VE79C, P798
  • [9] A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay
    Saeki, T
    Nakaoka, Y
    Fujita, M
    Tanaka, A
    Nagata, K
    Sakakibara, K
    Matano, T
    Hoshino, Y
    Miyano, K
    Isa, S
    Nakazawa, S
    Kakehashi, E
    Drynan, JM
    Komuro, M
    Fukase, T
    Iwasaki, H
    Takenaka, M
    Sekine, J
    Igeta, M
    Nakanishi, N
    Itani, T
    Yoshida, K
    Yoshino, H
    Hashimoto, S
    Yoshii, T
    Ichinose, M
    Imura, T
    Uziie, M
    Kikuchi, S
    Koyama, K
    Fukuzo, Y
    Okuda, T
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1996, 31 (11) : 1656 - 1668
  • [10] SAEKI T, 1997 S VLSI CIRC, P109