Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity

被引:33
作者
Briane, M
Milton, GW
Nesi, V
机构
[1] INSA Rennes, Ctr Math, F-35043 Rennes, France
[2] IRMAR, F-35043 Rennes, France
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[4] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1007/s00205-004-0315-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the positivity of the determinant of the local electric field in a conducting composite. We know by [1] that the positivity holds true in two dimensions for any periodic structure. Using a different approach from [11] we prove that is also the case for a laminate microstructure in any dimension. However, and this is the main result of the paper, we provide an example of a two-phase three-dimensional periodic composite for which the determinant changes sign.
引用
收藏
页码:133 / 150
页数:18
相关论文
共 31 条
[1]   Univalent σ-harmonic mappings:: Connections with quasiconformal mappings [J].
Alessandrini, G ;
Nesi, V .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1) :197-215
[2]   Univalent σ-harmonic mappings:: Applications to composites [J].
Alessandrini, G ;
Nesi, V .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (16) :379-406
[3]   Univalent σ-harmonic mappings [J].
Alessandrini, G ;
Nesi, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (02) :155-171
[4]  
Alessandrini G., 2002, INT MAT SER, V1, P1
[5]   Minimizers for a double-well problem with affine boundary conditions [J].
Allaire, G ;
Lods, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :439-466
[6]  
[Anonymous], 1996, COMPLEX VARIABLES TH, DOI DOI 10.1080/17476939608814865
[7]  
BAKHVALO.NS, 1974, DOKL AKAD NAUK SSSR+, V218, P1046
[8]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[9]  
Bauman P, 2001, INDIANA U MATH J, V50, P747
[10]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI