Seven Years of Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) of Surface Soil Moisture over Africa

被引:24
作者
Dostalova, Alena [1 ]
Doubkova, Marcela [1 ]
Sabel, Daniel [1 ]
Bauer-Marschallinger, Bernhard [1 ]
Wagner, Wolfgang [1 ]
机构
[1] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria
关键词
soil moisture; SAR; Envisat ASAR; change detection; Africa; MODE DATA; RETRIEVAL; ASSIMILATION; VALIDATION; SENTINEL-1; ERRORS; ASCAT;
D O I
10.3390/rs6087683
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A surface soil moisture (SSM) product at a 1-km spatial resolution derived from the Envisat Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) mode data was evaluated over the entire African continent using coarse spatial resolution SSM acquisitions from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and the Noah land surface model from the Global Land Data Assimilation System (GLDAS-NOAH). The evaluation was performed in terms of relative soil moisture values (%), as well as anomalies from the seasonal cycle. Considering the high radiometric noise of the ASAR GM data, the SSM product exhibits a good ability (Pearson correlation coefficient (R) = similar to 0.6 for relative soil moisture values and root mean square difference (RMSD) = 11% when averaged to 5-km resolution) to monitor temporal soil moisture variability in regions with low to medium density vegetation and yearly rainfall >250 mm. The findings agree with previous evaluation studies performed over Australia and further strengthen the understanding of the quality of the ASAR GM SSM product and its potential for data assimilation. Problems identified in the ASAR GM algorithm over arid regions were explained by azimuthal effects. Diverse backscatter behavior over different soil types was identified. The insights gained about the quality of the data were used to establish a reliable masking of the existing ASAR GM SSM product and the identification of areas where further research is needed for the future Sentinel-1-derived SSM products.
引用
收藏
页码:7683 / 7707
页数:25
相关论文
共 44 条
[1]   SMOSAR ALGORITHM FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 DATA [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Pauwels, Valentijn ;
Snoeij, Paul .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :1200-1203
[2]   Azimuthal anisotropy of scatterometer measurements over land [J].
Bartalis, Zoltan ;
Scipal, Klaus ;
Wagner, Wolfgang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2083-2092
[3]   Radar signatures of sahelian surfaces in mali using ENVISAT-ASAR data [J].
Baup, Frederic ;
Mougin, Eric ;
Hiernaux, Pierre ;
Lopes, Armand ;
De Rosnay, Patricia ;
Chenerie, Isabelle .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (07) :2354-2363
[4]   Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring [J].
Bolten, John D. ;
Crow, Wade T. ;
Zhan, Xiwu ;
Jackson, Thomas J. ;
Reynolds, Curt A. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2010, 3 (01) :57-66
[5]   Improving runoff prediction through the assimilation of the ASCAT soil moisture product [J].
Brocca, L. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Naeimi, V. ;
Bartalis, Z. ;
Hasenauer, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (10) :1881-1893
[6]   Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe [J].
Brocca, L. ;
Hasenauer, S. ;
Lacava, T. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Dorigo, W. ;
Matgen, P. ;
Martinez-Fernandez, J. ;
Llorens, P. ;
Latron, J. ;
Martin, C. ;
Bittelli, M. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3390-3408
[7]   A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals [J].
Crow, W. T. ;
Ryu, D. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (01) :1-16
[8]   Error characterisation of global active and passive microwave soil moisture datasets [J].
Dorigo, W. A. ;
Scipal, K. ;
Parinussa, R. M. ;
Liu, Y. Y. ;
Wagner, W. ;
de Jeu, R. A. M. ;
Naeimi, V. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (12) :2605-2616
[9]  
Doubkova M., 2014, J SEL TOP APPL EARTH
[10]   Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia [J].
Doubkova, Marcela ;
van Dijk, Albert I. J. M. ;
Sabel, Daniel ;
Wagner, Wolfgang ;
Bloeschl, Guenter .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :188-196