Discrete homology theory for metric spaces

被引:18
作者
Barcelo, Helene [1 ]
Capraro, Valerio [2 ]
White, Jacob A. [3 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Southampton, Dept Math, Southampton SO17 1BJ, Hants, England
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
HOMOTOPY-THEORY;
D O I
10.1112/blms/bdu043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study a notion of discrete homology theory for metric spaces. Instead of working with simplicial homology, our chain complexes are given by Lipschitz maps from an n-dimensional cube to a fixed metric space. We prove that the resulting homology theory satisfies a discrete analogue of the Eilenberg-Steenrod axioms, and prove a discrete analogue of the Mayer-Vietoris exact sequence. Moreover, this discrete homology theory is related to the discrete homotopy theory of a metric space through a discrete analogue of the Hurewicz theorem. We study the class of groups that can arise as discrete homology groups and, in this setting, we prove that the fundamental group of a smooth, connected, metrizable, compact manifold is isomorphic to the discrete fundamental group of a 'fine enough' rectangulation of the manifold. Finally, we show that this discrete homology theory can be coarsened, leading to a new non-trivial coarse invariant of a metric space.
引用
收藏
页码:889 / 905
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1993, MEMOIRS AM MATH SOC
[2]  
Atkin R., 1976, INT J MAN MACH STUD, V8, P448
[3]   ALGEBRA FOR PATTERNS ON A COMPLEX, I [J].
ATKIN, RH .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1974, 6 (03) :285-307
[4]   Homotopy theory of graphs [J].
Babson, Eric ;
Barcelo, Helene ;
de Longueville, Mark ;
Laubenbacher, Reinhard .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (01) :31-44
[5]   Perspectives on A-homotopy theory and its applications [J].
Barcelo, H ;
Laubenbacher, R .
DISCRETE MATHEMATICS, 2005, 298 (1-3) :39-61
[6]   Foundations of a connectivity theory for simplicial complexes [J].
Barcelo, H ;
Kramer, X ;
Laubenbacher, R ;
Weaver, C .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (02) :97-128
[7]   k-PARABOLIC SUBSPACE ARRANGEMENTS [J].
Barcelo, Helene ;
Severs, Christopher ;
White, Jacob A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (11) :6063-6083
[8]  
Block J., 1992, J. Am. Math. Soc, V5, P907, DOI [10.1090/S0894-0347-1992-1145337-X, DOI 10.1090/S0894-0347-1992-1145337-X, 10.2307/2152713, DOI 10.2307/2152713]
[9]  
Capraro V, 2013, APPL GEN TOPOL, V14, P61
[10]   Amenability, locally finite spaces, and bi-lipschitz embeddings [J].
Capraro, Valerio .
EXPOSITIONES MATHEMATICAE, 2013, 31 (04) :334-349