Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments

被引:27
|
作者
Srokowski, Tomasz [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 04期
关键词
diffusion; Fokker-Planck equation; ANOMALOUS DIFFUSION; FORCE-FIELDS; MEDIA;
D O I
10.1103/PhysRevE.79.040104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fractional Fokker-Planck equation, which contains a variable diffusion coefficient, is discussed and solved. It corresponds to the Levy flights in a nonhomogeneous medium. For the case with the linear drift, the solution is stationary in the long-time limit and it represents the Levy process with a simple scaling. The solution for the drift term in the form lambda sgn(x) possesses two different scales which correspond to the Levy indexes mu and mu+1 (mu < 1). The former component of the solution prevails at large distances but it diminishes with time for a given x. The fractional moments, as a function of time, are calculated. They rise with time and the rate of this growth increases with lambda.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [32] The operator method for solving the fractional Fokker-Planck equation
    Elwakil, SA
    Zahran, MA
    Abdou, MA
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 77 (03): : 317 - 327
  • [33] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [34] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219
  • [35] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [36] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522
  • [37] A mixed SOC-turbulence model for nonlocal transport and Levy-fractional Fokker-Planck equation
    Milovanov, Alexander V.
    Rasmussen, Jens Juul
    PHYSICS LETTERS A, 2014, 378 (21) : 1492 - 1500
  • [38] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [39] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [40] Information Geometric Investigation of Solutions to the Fractional Fokker-Planck Equation
    Anderson, Johan
    MATHEMATICS, 2020, 8 (05)