Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments

被引:27
|
作者
Srokowski, Tomasz [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 04期
关键词
diffusion; Fokker-Planck equation; ANOMALOUS DIFFUSION; FORCE-FIELDS; MEDIA;
D O I
10.1103/PhysRevE.79.040104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fractional Fokker-Planck equation, which contains a variable diffusion coefficient, is discussed and solved. It corresponds to the Levy flights in a nonhomogeneous medium. For the case with the linear drift, the solution is stationary in the long-time limit and it represents the Levy process with a simple scaling. The solution for the drift term in the form lambda sgn(x) possesses two different scales which correspond to the Levy indexes mu and mu+1 (mu < 1). The former component of the solution prevails at large distances but it diminishes with time for a given x. The fractional moments, as a function of time, are calculated. They rise with time and the rate of this growth increases with lambda.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A fractional Fokker-Planck equation for non-singular kernel operators
    dos Santos, M. A. F.
    Gomez, Ignacio S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [22] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [23] Fractional Fokker-Planck subdiffusion in alternating force fields
    Heinsalu, E.
    Patriarca, M.
    Goychuk, I.
    Haenggi, P.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [24] A mixed SOC-turbulence model for nonlocal transport and Levy-fractional Fokker-Planck equation
    Milovanov, Alexander V.
    Rasmussen, Jens Juul
    PHYSICS LETTERS A, 2014, 378 (21) : 1492 - 1500
  • [25] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [26] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [27] Information Geometric Investigation of Solutions to the Fractional Fokker-Planck Equation
    Anderson, Johan
    MATHEMATICS, 2020, 8 (05)
  • [28] Exact solutions for a generalized nonlinear fractional Fokker-Planck equation
    Ma, Junhai
    Liu, Yanqin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 515 - 521
  • [29] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [30] The fractional Fokker-Planck equation on comb-like model
    Zahran, MA
    Abulwafa, EM
    Elwakil, SA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 323 : 237 - 248