An exceptional isomorphism between modular curves of level 13

被引:18
作者
Baran, Burcu [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Elliptic curve; Galois representations; Modular curve; Non-split Cartan group;
D O I
10.1016/j.jnt.2014.05.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we use representation theory to compute an explicit equation over Q for the modular curve X-ns(13) associated to the normalizer of a non-split Cartan subgroup of level 13. We also prove that the same equation defines the modular curve X-s(13) associated to the normalizer of a split Cartan subgroup of level 13. Hence, these two modular curves are isomorphic over Q. This isomorphism does not seem to have a "modular" explanation. For instance, X-s(13)(Q) contains a cusp but X-ns(13)(Q) does not. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:273 / 300
页数:28
相关论文
共 10 条
[1]  
Baran B., 2012, PREPRINT
[2]   Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem [J].
Baran, Burcu .
JOURNAL OF NUMBER THEORY, 2010, 130 (12) :2753-2772
[3]  
Bilu Y., 2014, ANN I FOURI IN PRESS
[4]   The jacobians of non-split Cartan modular curves [J].
Chen, II .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :1-38
[5]  
de Smit B, 2000, MATH RES LETT, V7, P147
[6]  
LANG S, 2002, GRAD TEXTS MATH, V211
[7]   RATIONAL ISOGENIES OF PRIME DEGREE [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1978, 44 (02) :129-162
[8]  
Piatetski-Shapiro I., 1983, CONT MATH, V16
[9]  
Serre J.-P., 1997, ASPECTS MATH E, V15
[10]  
SERRE JP, 1972, INVENT MATH, V15, P259