Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images

被引:107
作者
Fang, Leyuan [1 ,2 ]
Li, Shutao [1 ]
Cunefare, David [2 ]
Farsiu, Sina [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
Denoising; image reconstruction; interpolation; layer segmentation; ophthalmic imaging; optical coherence tomography; retina; sparse representation; AUTOMATIC SEGMENTATION; MACULAR DEGENERATION; NOISE-REDUCTION; RETINAL LAYERS; OCT; CLASSIFICATION; REPRESENTATION; ACQUISITION; ENHANCEMENT; ALGORITHMS;
D O I
10.1109/TMI.2016.2611503
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We demonstrate the usefulness of utilizing a segmentation step for improving the performance of sparsity based image reconstruction algorithms. In specific, we will focus on retinal optical coherence tomography (OCT) reconstruction and propose a novel segmentation based reconstruction framework with sparse representation, termed segmentation based sparse reconstruction (SSR). The SSR method uses automatically segmented retinal layer information to construct layer-specific structural dictionaries. In addition, the SSR method efficiently exploits patch similarities within each segmented layer to enhance the reconstruction performance. Our experimental results on clinical-grade retinal OCT images demonstrate the effectiveness and efficiency of the proposed SSR method for both denoising and interpolation of OCT images.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [21] Inpainting for Saturation Artifacts in Optical Coherence Tomography Using Dictionary-Based Sparse Representation
    Liu, Hongshan
    Cao, Shengting
    Ling, Yuye
    Gan, Yu
    IEEE PHOTONICS JOURNAL, 2021, 13 (02):
  • [22] Active contour detection for the segmentation of optical coherence tomography images of the retina
    Somfai, Gabor Mark
    Jozsef, Molnar
    Chetverikov, Dmitry
    DeBuc, Delia
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [23] Fully automated lumen segmentation of intracoronary optical coherence tomography images
    Athanasiou, L. S.
    Rikhtegar, Farhad
    Galon, Micheli Zanotti
    Lopes, Augusto Celso
    Lemos, Pedro Alves
    Edelman, Elazer R.
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [24] Automatic Segmentation of Vessel Lumen in Intravascular Optical Coherence Tomography Images
    Wang, Ancong
    Tang, Xiaoying
    2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2016, : 948 - 953
  • [25] Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images Using Bayesian Deep Learning
    Sedai, Suman
    Antony, Bhavna
    Mahapatra, Dwarikanath
    Garnavi, Rahil
    COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 219 - 227
  • [26] Vessel segmentation in 2-D optical coherence tomography images
    Liu, Li-chang
    Lee, Jiann-der
    Hsu, Yu-wei
    Tseng, Scott
    Tseng, Ellen
    Tsai, Meng-tsan
    2013 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING (CME), 2013, : 35 - 39
  • [27] Region segmentation in 3-D optical coherence tomography images
    Chou, Cheng-wei
    Lee, Jiann-der
    Liu, Carol T.
    Tsai, Meng-tsan
    2014 IEEE INTERNATIONAL SYMPOSIUM ON BIOELECTRONICS AND BIOINFORMATICS (ISBB), 2014,
  • [29] Improved sparse representation algorithm for optical coherence tomography images
    Miao, Hanyuan
    Zhou, Xiaohong
    Wang, Wei
    Jiang, Weiliang
    Jin, Tao
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (04) : 1286 - 1293
  • [30] Automatic choroidal segmentation in optical coherence tomography images based on curvelet transform and graph theory
    Eghtedar, Reza Alizadeh
    Esmaeili, Mahdad
    Peyman, Alireza
    Akhlaghi, Mohammadreza
    Rasta, Seyed Hossein
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2023, 13 (02): : 92 - 100