Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images

被引:107
|
作者
Fang, Leyuan [1 ,2 ]
Li, Shutao [1 ]
Cunefare, David [2 ]
Farsiu, Sina [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
Denoising; image reconstruction; interpolation; layer segmentation; ophthalmic imaging; optical coherence tomography; retina; sparse representation; AUTOMATIC SEGMENTATION; MACULAR DEGENERATION; NOISE-REDUCTION; RETINAL LAYERS; OCT; CLASSIFICATION; REPRESENTATION; ACQUISITION; ENHANCEMENT; ALGORITHMS;
D O I
10.1109/TMI.2016.2611503
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We demonstrate the usefulness of utilizing a segmentation step for improving the performance of sparsity based image reconstruction algorithms. In specific, we will focus on retinal optical coherence tomography (OCT) reconstruction and propose a novel segmentation based reconstruction framework with sparse representation, termed segmentation based sparse reconstruction (SSR). The SSR method uses automatically segmented retinal layer information to construct layer-specific structural dictionaries. In addition, the SSR method efficiently exploits patch similarities within each segmented layer to enhance the reconstruction performance. Our experimental results on clinical-grade retinal OCT images demonstrate the effectiveness and efficiency of the proposed SSR method for both denoising and interpolation of OCT images.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [1] Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation
    Fang, Leyuan
    Li, Shutao
    McNabb, Ryan P.
    Nie, Qing
    Kuo, Anthony N.
    Toth, Cynthia A.
    Izatt, Joseph A.
    Farsiu, Sina
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (11) : 2034 - 2049
  • [2] Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation
    Abbasi, Ashkan
    Monadjemi, Amirhassan
    Fang, Leyuan
    Rabbani, Hossein
    JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (03)
  • [3] 3-D Adaptive Sparsity Based Image Compression With Applications to Optical Coherence Tomography
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Izatt, Joseph A.
    Farsiu, Sina
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (06) : 1306 - 1320
  • [4] Retinal Layer Segmentation in Optical Coherence Tomography Images
    Dodo, Bashir Isa
    Li, Yongmin
    Kaba, Djibril
    Liu, Xiaohui
    IEEE ACCESS, 2019, 7 : 152388 - 152398
  • [5] Automated segmentation of optical coherence tomography images
    Kharmyssov, C.
    Ko, M. W. L.
    Kim, J. R.
    CHINESE OPTICS LETTERS, 2019, 17 (01)
  • [6] Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue
    Sawyer, Travis W.
    Rice, Photini F. S.
    Sawyer, David M.
    Koevary, Jennifer W.
    Barton, Jennifer K.
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [7] Automated Denoising and Segmentation of Optical Coherence Tomography Images
    Roychowdhury, Sohini
    Koozekanani, Dara D.
    Parhi, Keshab K.
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 258 - 262
  • [8] Graph Based Lumen Segmentation in Optical Coherence Tomography Images
    Xu, Mengdi
    Cheng, Jun
    Wong, Damon Wing Kee
    Liu, Jiang
    Taruya, Akira
    Tanaka, Atsushi
    2015 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2015,
  • [9] Boundary Aware U-Net for Retinal Layers Segmentation in Optical Coherence Tomography Images
    Wang, Bo
    Wei, Wei
    Qiu, Shuang
    Wang, Shengpei
    Li, Dan
    He, Huiguang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (08) : 3029 - 3040
  • [10] User-guided segmentation for volumetric retinal optical coherence tomography images
    Yin, Xin
    Chao, Jennifer R.
    Wang, Ruikang K.
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (08)