External heating and current drive source requirements towards steady-state operation in ITER

被引:23
|
作者
Poli, F. M. [1 ]
Kessel, C. E. [1 ]
Bonoli, P. T. [2 ]
Batchelor, D. B. [3 ]
Harvey, R. W. [4 ]
Snyder, P. B. [5 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] CompX, Del Mar, CA 92014 USA
[5] Gen Atom Co, San Diego, CA 92186 USA
关键词
steady-state; heating; internal barriers; tokamak; reactor; current drive; INTERNAL TRANSPORT BARRIERS; L-MODE;
D O I
10.1088/0029-5515/54/7/073007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E x B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H-98 = 1.6 and fusion gain Q = 5.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Steady-state operation of 170 GHz-1 MW gyrotron for ITER
    Kasugai, A.
    Sakamoto, K.
    Takahashi, K.
    Kajiwara, K.
    Kobayashi, N.
    NUCLEAR FUSION, 2008, 48 (05)
  • [22] CURRENT DRIVE STUDIES FOR THE ARIES STEADY-STATE TOKAMAK REACTORS
    MAU, TK
    EHST, DA
    MANDREKAS, J
    FUSION ENGINEERING AND DESIGN, 1994, 25 (1-3) : 205 - 214
  • [23] STEADY-STATE DYNAMO AND CURRENT DRIVE IN A NONUNIFORM BOUNDED PLASMA
    METT, RR
    TAYLOR, JB
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (01): : 73 - 78
  • [24] IGNITION AND STEADY-STATE CURRENT DRIVE CAPABILITY OF INTOR PLASMA
    UCKAN, NA
    FUSION TECHNOLOGY, 1989, 15 (02): : 1076 - 1081
  • [25] Steady state tokamak equilibria without external current drive
    Shaing, KC
    Aydemir, AY
    Lin-Liu, YR
    Miller, RL
    THEORY OF FUSION PLASMAS, 1999, 18 : 159 - 170
  • [26] ISOTOPIC STEADY-STATE REQUIREMENTS
    SIGUEL, EN
    EXPERIMENTAL AND MOLECULAR PATHOLOGY, 1975, 22 (03) : 430 - 431
  • [27] Progress on the heating and current drive systems for ITER
    Jacquinot, J.
    Albajar, F.
    Beaumont, B.
    Becoulet, A.
    Bonicelli, T.
    Bora, D.
    Campbell, D.
    Chakraborty, A.
    Darbos, C.
    Decamps, H.
    Denisov, G.
    Goulding, R.
    Graceffa, J.
    Gassmann, T.
    Hemsworth, R.
    Henderson, M.
    Hoang, G. T.
    Inoue, T.
    Kobayashi, N.
    Lamalle, P. U.
    Mukherjee, A.
    Nightingale, M.
    Rasmussen, D.
    Rao, S. L.
    Saibene, G.
    Sakamoto, K.
    Sartori, R.
    Schunke, B.
    Sonato, P.
    Swain, D.
    Takahashi, K.
    Tanaka, M.
    Tanga, A.
    Watanabe, K.
    FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) : 125 - 130
  • [28] Electron cyclotron heating and current drive in ITER
    Harvey, RW
    Nevins, WM
    Smith, GR
    Lloyd, B
    OBrien, MR
    Warrick, CD
    NUCLEAR FUSION, 1997, 37 (01) : 69 - 81
  • [29] PROGRESS IN STEADY-STATE PLASMA OPERATION USING ICRF HEATING ON LHD
    Kumazawa, R.
    Mutoh, T.
    Saito, K.
    Seki, T.
    Kasahara, H.
    Tokitani, M.
    Masuzaki, S.
    Ashikawa, N.
    Nakamura, Y.
    Kubo, S.
    Shimozuma, T.
    Yoshimura, Y.
    Igami, H.
    Takahashi, H.
    Takeiri, Y.
    Tsumori, K.
    Osakabe, M.
    Ikeda, K.
    Nagaoka, K.
    Kaneko, O.
    Goto, M.
    Sato, K.
    Chikaraishi, H.
    Ida, K.
    Nagayama, Y.
    Zhao, Y.
    Kwak, J. G.
    Yoon, J. S.
    FUSION SCIENCE AND TECHNOLOGY, 2010, 58 (01) : 524 - 529
  • [30] STEADY-STATE ANALYSIS OF A CURRENT SOURCE INVERTER-RELUCTANCE MOTOR DRIVE .1. ANALYSIS
    ONG, CM
    LIPO, TA
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1977, 96 (04): : 1145 - 1151