External heating and current drive source requirements towards steady-state operation in ITER

被引:25
作者
Poli, F. M. [1 ]
Kessel, C. E. [1 ]
Bonoli, P. T. [2 ]
Batchelor, D. B. [3 ]
Harvey, R. W. [4 ]
Snyder, P. B. [5 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] CompX, Del Mar, CA 92014 USA
[5] Gen Atom Co, San Diego, CA 92186 USA
关键词
steady-state; heating; internal barriers; tokamak; reactor; current drive; INTERNAL TRANSPORT BARRIERS; L-MODE;
D O I
10.1088/0029-5515/54/7/073007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E x B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H-98 = 1.6 and fusion gain Q = 5.
引用
收藏
页数:12
相关论文
共 47 条
[11]   Transition to an enhanced internal transport barrier [J].
Fukuyama, A ;
Takatsuka, S ;
Itoh, SI ;
Yagi, M ;
Itoh, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (05) :653-656
[12]   Cyclic scenarios for steady-state operation of tokamak reactors [J].
Garcia, J. ;
Giruzzi, G. ;
Maget, P. ;
Artaud, J. F. ;
Basiuk, V. ;
Decker, J. ;
Huysmans, G. ;
Imbeaux, F. ;
Peysson, Y. ;
Schneider, M. .
NUCLEAR FUSION, 2010, 50 (02)
[13]   Integrated modeling of ITER steady-state scenarios [J].
Garcia, J. ;
Giruzzi, G. ;
Artaud, J. F. ;
Basiuk, V. ;
Decker, J. ;
Imbeaux, F. ;
Peysson, Y. ;
Schneider, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
[14]  
Garcia J., 2012, P 39 EUR PHYS SOC C, VP5.057
[15]   Advances on modelling of ITER scenarios: physics and computational challenges [J].
Giruzzi, G. ;
Garcia, J. ;
Artaud, J. F. ;
Basiuk, V. ;
Decker, J. ;
Imbeaux, F. ;
Peysson, Y. ;
Schneider, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
[16]   NEW TECHNIQUES FOR CALCULATING HEAT AND PARTICLE SOURCE RATES DUE TO NEUTRAL BEAM INJECTION IN AXISYMMETRIC TOKAMAKS [J].
GOLDSTON, RJ ;
MCCUNE, DC ;
TOWNER, HH ;
DAVIS, SL ;
HAWRYLUK, RJ ;
SCHMIDT, GL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 43 (01) :61-78
[17]   Lower hybrid current drive for the steady-state scenario [J].
Goniche, M. ;
Amicucci, L. ;
Baranov, Y. ;
Basiuk, V. ;
Calabro, G. ;
Cardinali, A. ;
Castaldo, C. ;
Cesario, R. ;
Decker, J. ;
Dodt, D. ;
Ekedahl, A. ;
Figini, L. ;
Garcia, J. ;
Giruzzi, G. ;
Hillairet, J. ;
Hoang, G. T. ;
Hubbard, A. ;
Joffrin, E. ;
Kirov, K. ;
Litaudon, X. ;
Mailloux, J. ;
Oosako, T. ;
Parker, R. ;
Ridolfini, V. Pericoli ;
Peysson, Y. ;
Platania, P. ;
Rimini, F. ;
Sharma, P. K. ;
Sozzi, C. ;
Wallace, G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
[18]   Safety factor profile requirements for electron ITB formation in TCV [J].
Goodman, TP ;
Behn, R ;
Camenen, Y ;
Coda, S ;
Fable, E ;
Henderson, MA ;
Nikkola, P ;
Rossel, J ;
Sauter, O ;
Scarabosio, A ;
Zucca, C ;
Alberti, S ;
Amorim, P ;
Andrèbe, Y ;
Appert, K ;
Arnoux, G ;
Bortolon, A ;
Bottino, A ;
Chavan, R ;
Condrea, I ;
Droz, E ;
Duval, BP ;
Etienne, P ;
Fasel, D ;
Fasoli, A ;
Gulejová, B ;
Hogge, JP ;
Horacek, J ;
Isoz, PF ;
Joye, B ;
Karpushov, A ;
Kim, SH ;
Klimanov, I ;
Lavanchy, P ;
Lister, JB ;
Llobet, X ;
Madeira, T ;
Magnin, JC ;
Marinoni, A ;
Marlétaz, B ;
Marmillod, P ;
Martin, Y ;
Martynov, A ;
Maslov, M ;
Mayor, JM ;
Moret, JM ;
Mück, A ;
Paris, PJ ;
Pavlov, I ;
Perez, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B107-B120
[19]   Chapter 6: Steady state operation [J].
Gormezano, C. ;
Sips, A. C. C. ;
Luce, T. C. ;
Ide, S. ;
Becoulet, A. ;
Litaudon, X. ;
Isayama, A. ;
Hobirk, J. ;
Wade, M. R. ;
Oikawa, T. ;
Prater, R. ;
Zvonkov, A. ;
Lloyd, B. ;
Suzuki, T. ;
Barbato, E. ;
Bonoli, P. ;
Phillips, C. K. ;
Vdovin, V. ;
Joffrin, E. ;
Casper, T. ;
Ferron, J. ;
Mazon, D. ;
Moreau, D. ;
Bundy, R. ;
Kessel, C. ;
Fukuyama, A. ;
Hayashi, N. ;
Imbeaux, F. ;
Murakami, M. ;
Polevoi, A. R. ;
St John, H. E. .
NUCLEAR FUSION, 2007, 47 (06) :S285-S336
[20]  
Hammett G., 1986, Fast ion studies of ion cyclotron heating in the PLT tokamak