External heating and current drive source requirements towards steady-state operation in ITER

被引:25
作者
Poli, F. M. [1 ]
Kessel, C. E. [1 ]
Bonoli, P. T. [2 ]
Batchelor, D. B. [3 ]
Harvey, R. W. [4 ]
Snyder, P. B. [5 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] CompX, Del Mar, CA 92014 USA
[5] Gen Atom Co, San Diego, CA 92186 USA
关键词
steady-state; heating; internal barriers; tokamak; reactor; current drive; INTERNAL TRANSPORT BARRIERS; L-MODE;
D O I
10.1088/0029-5515/54/7/073007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E x B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H-98 = 1.6 and fusion gain Q = 5.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Scaling of density peaking in H-mode plasmas based on a combined database of AUG and JET observations [J].
Angioni, C. ;
Weisen, H. ;
Kardaun, O. J. W. F. ;
Maslov, M. ;
Zabolotsky, A. ;
Fuchs, C. ;
Garzotti, L. ;
Giroud, C. ;
Kurzan, B. ;
Mantica, P. ;
Peeters, A. G. ;
Stober, J. .
NUCLEAR FUSION, 2007, 47 (09) :1326-1335
[2]  
[Anonymous], 1989, AIP CONF PROC, DOI DOI 10.1063/1.38487
[3]   Simulation of wave interactions with MHD [J].
Batchelor, D. ;
Abla, G. ;
Bateman, G. ;
Bernholdt, D. ;
Berry, L. ;
Bonoli, P. ;
Bramley, R. ;
Breslau, J. ;
Chance, M. ;
Chen, J. ;
Choi, M. ;
Elwasif, W. ;
Fu, G. ;
Harvey, R. ;
Jaeger, E. ;
Jardin, S. ;
Jenkins, T. ;
Keyes, D. ;
Klasky, S. ;
Kruger, S. ;
Ku, L. ;
Lynch, V. ;
McCune, D. ;
Ramos, J. ;
Schissel, D. ;
Schnack, D. ;
Wright, J. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
[4]  
Bora D, 2007, AIP CONF PROC, V933, P25
[5]  
Brambilla M., 1996, 566566 IPP
[6]   Influence of the q-profile shape on plasma performance in JET [J].
Challis, CD ;
Litaudon, X ;
Tresset, G ;
Baranov, YF ;
Bécoulet, A ;
Giroud, C ;
Hawkes, NC ;
Howell, DF ;
Joffrin, E ;
Lomas, PJ ;
Mailloux, J ;
Mantsinen, MJ ;
Stratton, BC ;
Ward, DJ ;
Zastrow, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (07) :1031-1055
[7]   Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injection [J].
Ferron, J. R. ;
Holcomb, C. T. ;
Luce, T. C. ;
Park, J. M. ;
Politzer, P. A. ;
Turco, F. ;
Heidbrink, W. W. ;
Doyle, E. J. ;
Hanson, J. M. ;
Hyatt, A. W. ;
In, Y. ;
La Haye, R. J. ;
Lanctot, M. J. ;
Okabayashi, M. ;
Petrie, T. W. ;
Petty, C. C. ;
Zeng, L. .
PHYSICS OF PLASMAS, 2013, 20 (09)
[8]   Transition dynamics and confinement scaling in COMPASS-D H mode plasmas [J].
Fielding, SJ ;
Carolan, PG ;
Connor, JW ;
Conway, NJ ;
Field, AR ;
Helander, P ;
Igitkhanov, Y ;
Lloyd, B ;
Meyer, H ;
Morris, AW ;
Pogutse, O ;
Valovic, M ;
Wilson, HR .
NUCLEAR FUSION, 2001, 41 (07) :909-917
[9]   THEORY OF IMPROVED CONFINEMENT IN HIGH-BETA(P) TOKAMAKS [J].
FUKUYAMA, A ;
ITOH, K ;
ITOH, SI ;
YAGI, M ;
AZUMI, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (09) :1385-1390
[10]   TRANSPORT SIMULATION ON L-MODE AND IMPROVED CONFINEMENT ASSOCIATED WITH CURRENT PROFILE MODIFICATION [J].
FUKUYAMA, A ;
ITOH, K ;
ITOH, SI ;
YAGI, M ;
AZUMI, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1995, 37 (06) :611-631