External heating and current drive source requirements towards steady-state operation in ITER

被引:23
|
作者
Poli, F. M. [1 ]
Kessel, C. E. [1 ]
Bonoli, P. T. [2 ]
Batchelor, D. B. [3 ]
Harvey, R. W. [4 ]
Snyder, P. B. [5 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] CompX, Del Mar, CA 92014 USA
[5] Gen Atom Co, San Diego, CA 92186 USA
关键词
steady-state; heating; internal barriers; tokamak; reactor; current drive; INTERNAL TRANSPORT BARRIERS; L-MODE;
D O I
10.1088/0029-5515/54/7/073007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E x B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H-98 = 1.6 and fusion gain Q = 5.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Heating and current drive requirements towards Steady State operation in ITER
    Poli, F. M.
    Bonoli, P. T.
    Kessel, C. E.
    Batchelor, D. B.
    Gorelenkova, M.
    Harvey, B.
    Petrov, Y.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 33 - 40
  • [2] Reassessment of steady-state operation in ITER with NBI and EC heating and current drive
    Polevoi, A. R.
    Ivanov, A. A.
    Medvedev, S. Yu
    Huijsmans, G. T. A.
    Kim, S. H.
    Loarte, A.
    Fable, E.
    Kuyanov, A. Y.
    NUCLEAR FUSION, 2020, 60 (09)
  • [3] Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER
    Murakami, M.
    Park, J. M.
    Giruzzi, G.
    Garcia, J.
    Bonoli, P.
    Budny, R. V.
    Doyle, E. J.
    Fukuyama, A.
    Hayashi, N.
    Honda, M.
    Hubbard, A.
    Ide, S.
    Imbeaux, F.
    Jaeger, E. F.
    Luce, T. C.
    Na, Y. -S.
    Oikawa, T.
    Osborne, T. H.
    Parail, V.
    Polevoi, A.
    Prater, R.
    Sips, A. C. C.
    Snipes, J.
    St John, H. E.
    Snyder, P. B.
    Voitsekhovitch, I.
    NUCLEAR FUSION, 2011, 51 (10)
  • [4] A study of the heating and current drive options and confinement requirements to access steady-state plasmas at Q ∼ 5 in ITER and associated operational scenario development
    Kim, S. H.
    Polevoi, A. R.
    Loarte, A.
    Medvedev, S. Yu
    Huijsmans, G. T. A.
    NUCLEAR FUSION, 2021, 61 (07)
  • [5] FEASIBILITY OF STEADY-STATE SPHEROMAK OPERATION BY ECRH CURRENT DRIVE
    YOSHIOKA, K
    ANTONSEN, TM
    OTT, E
    NUCLEAR FUSION, 1986, 26 (04) : 439 - 447
  • [6] FEASIBILITY OF STEADY-STATE SPHEROMAK OPERATION BY ECRH CURRENT DRIVE.
    Univ of Maryland, College Park, MD,, USA, Univ of Maryland, College Park, MD, USA
    Nucl Fusion, 1986, 4 (439-447):
  • [7] Noninductive current drive and steady-state operation in JT-60U
    Ushigusa, K
    Ide, S
    Oikawa, T
    Suzuki, T
    Kamada, Y
    Fujita, T
    Ikeda, Y
    Naito, O
    Matsuoka, M
    Kondoh, T
    Isayama, A
    Seki, M
    Imai, T
    Sakamoto, K
    Umeda, N
    Hamamatsu, K
    Fujii, T
    Uehara, K
    Yamamoto, T
    Miura, Y
    Kikuchi, M
    Kuriyama, M
    Ninomiya, H
    FUSION SCIENCE AND TECHNOLOGY, 2002, 42 (2-3) : 255 - 277
  • [8] PHYSICS OF PLASMA CONTROL TOWARD STEADY-STATE OPERATION OF ITER
    Kikuchi, M.
    Campbell, D. J.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (03) : 440 - 468
  • [9] High internal inductance for steady-state operation in ITER and a reactor
    Ferron, J. R.
    Holcomb, C. T.
    Luce, T. C.
    Park, J. M.
    Kolemen, E.
    La Haye, R. J.
    Solomon, W. M.
    Turco, F.
    NUCLEAR FUSION, 2015, 55 (07)
  • [10] RTO/RC ITER plasma performance: inductive and steady-state operation
    Mukhovatov, V
    Boucher, D
    Fujisawa, N
    Janeschitz, G
    Leonov, V
    Matsumoto, H
    Polevoy, A
    Shimada, M
    Vayakis, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 : A223 - A230