Non-linear stability for convection with quadratic temperature dependent viscosity

被引:3
|
作者
Vaidya, Ashwin
Wulandana, Rachmadian
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
关键词
energy stability; convection; Navier-Stokes; temperature dependent viscosity;
D O I
10.1002/mma.742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the non-linear stability of convection for a Newtonian fluid heated from below, where the viscosity of the fluid depends upon temperature. We are able to show that for Rayleigh numbers below a certain critical value, Ra-c, the rest state of the fluid and the steady temperature distribution remains non-linearly stable, using the calculations of Diaz and Straughan (Continuum Mech. Thermodyn. 2004; 16:347-352). The central contribution of this paper lies in a simpler proof of non-linear stability, than the ones in the current literature, by use of a suitable maximum principle argument. Copyright (C) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:1555 / 1561
页数:7
相关论文
共 50 条
  • [41] Non-linear stability and convection for laminar flows in a porous medium with Brinkman law
    Lombardo, S
    Mulone, G
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (06) : 453 - 462
  • [42] Computation of non-Newtonian quadratic convection in electro-magneto-hydrodynamic (EMHD) duct flow with temperature-dependent viscosity
    Zhang, Lijun
    Bhatti, Muhammad Mubashir
    Beg, Osman Anwar
    Ellahi, Rahmat
    Oztop, Hakan F.
    ADVANCES IN MECHANICAL ENGINEERING, 2023, 15 (12)
  • [43] Nonlinear stability for convection with temperature dependent viscosity in a Navier-Stokes-Voigt fluid
    Straughan, Brian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (05):
  • [44] Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity
    K. R. Rajagopal
    G. Saccomandi
    L. Vergori
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 739 - 755
  • [45] NONLINEAR STABILITY FOR THERMAL-CONVECTION IN A MICROPOLAR FLUID WITH TEMPERATURE-DEPENDENT VISCOSITY
    FRANCHI, F
    STRAUGHAN, B
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1992, 30 (10) : 1349 - 1360
  • [46] Stability analysis of the Rayleigh-Benard convection for a fluid with temperature and pressure dependent viscosity
    Rajagopal, K. R.
    Saccomandi, G.
    Vergori, L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 739 - 755
  • [47] Non-linear Chandrasekhar-Bénard convection in temperature-dependent variable viscosity Boussinesq-Stokes suspension fluid with variable heat source/sink
    Nagasundar Kavitha
    Agrahara Sanjeevmurthy Aruna
    MKoppalu Shankarappa Basavaraj
    Venkatesh Ramachandramurthy
    Applications of Mathematics, 2023, 68 : 357 - 376
  • [48] Non-linear temperature variation of shear viscosity in high-TC superconductors
    Abu-Samreh, MM
    PHYSICA B-CONDENSED MATTER, 2002, 321 (1-4) : 348 - 352
  • [49] Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field-dependent viscosity
    P. G. Siddheshwar
    D. Uma
    Bhavya Shivaraj
    The European Physical Journal Plus, 135
  • [50] Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field-dependent viscosity
    Siddheshwar, P. G.
    Uma, D.
    Shivaraj, Bhavya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):